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Convex functions

C': a subset of finite-dim real Euclidean space £ with inner product
(-, -) and induced norm || - ||.

B, = ball with center at 0 and radius €.
affine hull affC' = {Z;n:l)\kxk |zt ™ e O A =1, m > 1}
relative int. riC = {z € affC' | 3e > 0, (z + B:) NaffC C C}

If C'is convex, then aff (riC') = aff C' = aff (cl(C')), where cl(C) is
the closure

Let f: & — [—o0, 00| be an extended real-valued function
epigraph  epi f = {(x,u) €EXR] f(z) < u}
effective dom.  dom(f) ={z €& | f(z) < o}

f is said to be convex (closed) if epi f is convex (closed).
A convex function is proper if epi f # () and f(x) > —coVx € £.



Convex functions

Let C be a convex set in £. A function f: C' = R is said to be

convex  F(\z+ By) < AF(x) + BF() Yo,y € CA+B=1,18>0
Strongly convex 3o > 0s.t. f(Az + By) < Af(z) + Bf(y) — §A8]|z — yl?

directional deriv. at = along h:  f'(z;h) = limy w

If fis convex and f(x) is finite, then f’(x;h) exists for any h € £.

Definition 1
A vector x* € £ is said to be a subgradient of f atx € £ if

f(z) > flz)+{z*, z—x) Vz€E.

subdifferential of f at x, Of(x) = set of all subgradients of f at x.



Let f be an extended real-valued convex fun. on £. Then:

Proposition 2 (Rockafellar70, Sec 23-25,27,31)

@ f proper = ri(dom(f)) # 0 and Of(x) # 0 for any x €
ri(dom (f)). Moreover, Of(x) is bounded iff x € int(dom f).
@ [ proper = Of is monotone, i.e., for any x,y € &,

(r—y,u—v) >0 Yuedf(z), veadf(y)

If f is proper and convex, then f is Lipschitz cont. on any closed
bounded subset of ri(dom f).

Let f, g be proper convex fun. on E. If ri(dom f) N ri(dom g) #
0, then O(f + g)(x) = df(x) + dg(x) for all z € E.

If f is closed and proper, then inf,ce f(z) is attained at x iff
0 € f(x).

If f is closed and proper, then Of is upper semicontinuous, i.e.,
for any v € Of(xy) s.t. vy — v and x — x, we have v €
of (x).

@ If f(x) is finite, then f is differentiable at x iff Of(x) is a sin-
gleton.
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Fenchel conjugate

Let f be an extended real-valued fun. on &.

Fenchel conj. f*(y) =sup{{y, =) — f(x) |z € &}, ye¢&.

f* is always closed and convex.

Proposition 3

Let f be a closed proper convex fun. on £. For any x € £, we have
the following equivalent conditions for a vector x* € £:

0 f(z)+ f*(z*) = (z, z¥)

Q z* € df(x)

@ z € of*(z")

Q (z, z*) — f(z) = maxee{(2, z*) — f(2)}

O (z, 2") — f*(z%) = maxzree{(z, 2*) — f*(z7)}

For any C C &, define

0 fzeC

indicator fun. do(z) = { oo otherwise



Dual cone

Let CCEbeacone ie.zeCand A\>0= AreC.
dualcone C*={yef|(y,z)>0VzeC}

C* is a closed convex cone (even if C' is not convex).
If C = L, a vector subspace of £, then C* = L*.

Proposition 4 (Rockafellar70, Secs 12-13)
Let f be cpc (closed proper convex) on €. Suppose f(0) = 0 and f

is positively homogeneous, i.e., f(Ax) = \f(z) V 2 € € and A > 0.
Then f* = (53f(0).

(1) If C'is also closed, then f = ¢ is positively homo. and f(0) = 0.
Hence 0f(0) =C° :==C*, 5= f"=dco

(2) If f(z) = max{z1,...,2,}, then f(0) = 0 and f is positively
homo. with

of(0)={zeR" |21+ ... 2, = 1,2 > 0}



Semismoothness

Definition 5 (Semismooth)

Let f be a locally Lipschitz cont. fun. from an open set €) to R.

@ [ is said to be semismooth at x if it is directionally differentiable
at x and

flx+h)—=f(x) = (Vf(x+h), h) =0(|h]]) YR —=0, x4+ h e Dy

where Dy = {y € Q| f is differentiable at y}.

@ Moreover, fis said to be strongly semismooth at x if

f@+h)— f(x) = (Vi@ +h), k) =O0(|h|*>) Vh—0, z+h €Dy

By Rademacher’s thm., f is differentiable almost everywhere on 2.



Semismoothness

Theorem 6

Any convex function f : £ — R is semismooth.

Proof. By Prop. 2, f is locally Lipschitz cont. on £. Since f is
convex and f(x) is finite, f'(x;h) exists for all x € £ and h € &.
From convexity of f, we get

fle+h)—f(x) = (Vf(x+h),h) <0 Va+heDy.

Since f is convex and proper, given any z € int(dom f) and € > 0,
36 > 0 such that 9f(x + h) C Of(x) + Be for all ||h|| < 6. In
particular when x + h € Dy, there exist Vj, € 0f(x) such that

IVf(z+h)=Vp|[<e
f@+h) = f(z) = (Vi@ +h), h) = (Vo = Vf(x + h), h) > —<]|h]
Hence f(x +h) — f(z) — (Vf(z + h), h) = o(||h||) for z + h € Dy,
h — 0.
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Moreau-Yosida regularization and proximal mapping

Let f: & — (—o00, 0] be a closed proper convex (cpc) fun.
MY reg. of f at o My(e) = min { 6(y:2) = f(y) + ¢ |y — ol*}
. : f L ; : 5

Proximal mapping f at z:  Pj(z) = argminyeg{ . }

Proposition 7

Py (x) exists and is unique.

Proof. Uniqueness follows from strong convexity of the function
o(-;x). Since f is proper, 3 yo € ri (dom f) and z € 9f(yo). Thus

f) > flyo) + {2z, y —yo) Vye&domf

and ¢(y; x) — +oo as ||y|| — oo. Since ¢(-;x) is coercive, existence
of a minimizer follows from standard compactness argument.



Examp 1. Let f(z) = pllz|i for z € R™. Then f*(z) = dc(2)
where C = 0f(0) = {z € R™ | ||z||oo < p}.
Proof. For any z s.t. ||z]|ec < p. We have

(2, 2) < |lzllocllzlly < pllzly = f(x) V2 eR™ = z€df(0)

Conversely for any v € 9f(0), it holds that f(z) > (v, x) Vax € R™.
Take x = sign(vj)e;, we get p > |vj| for any j. Hence [[v]|oc < p. [

Pi(x) = x— Ppe(x) =2 —1Ig(x)
= sign(x) o max{|z| — p,0} (soft thresholding)

Examp 2. Let C' C &£ be closed and convex. For f = dc,

. 1 . 1 9
Ps, (x) = argmin, e {6 ()45 ly—z| } = argmin,cc5lly—a | = Mo (x)
Suppose C' = S, the cone of n x n symmetric PSD matrices. Then

Ic(z) = QDiag(d,)QT  using spectral decomp. = = QDiag(d)Q”

13



Examp 3. Let f(z) = ||z|l« = |lo(z)||1 be the nuclear norm of
x € R™ ™ Then f*(z) = dc(z) where C := 0f(0) = {z € R™*™ |
lo(2)]loo < 1}

Proof. Based on von Neumann's trace ineq. |(z, 2)| < (o(z), o(2)).
Let # = UDiag(o(x))V* be its SVD. Then

Pi(z) = x— Pp(z) =2 —Tlc(x)
= U(Diag(o(z)) — Diag(min{o(z),1}))V*

Examp 4. Let f(z) = ||o(2)||« be spectral norm of x € R™*™.
Then f* = dc where C = 9f(0) = {z € R™*" | ||o(2)]1 < 1}, and

Pi(x) = z— Pp(z) =2 — ()
— - UDiag(lp(o(x))V*, B={oeR™| ol <1}

Note: IIp(o) can be computed analytically with O(m) operations.
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Theorem 8

@ P and Qy := 1 — Py are firmly nonexpansive, i.e.,
1Pf(x) = Pr(y)lI* < (Pp(x) — Py(y), & —y) Va,ye&

@ My is cont. differentiable and VM¢(x) = x — Pr(x) Vo € €.

Proof. (1) From the def. of 2 := Ps(z), y* := Pf(y), we get
0€df(z")+a*—z oz :=x—a"cdf(z”), ...

Monotonicity of Jf implies that (z* — y*, z — y) > 0.

Hence [|z* — y*[|* < (2" — y*, 2 —y) < [|l2* — y*[ll|l= — o
= [la" =y < llz = yll

Similarly, |z — gl|* < (z —y, T — 7). Hence [|Z — 7] < ||z —y]|.



Proof. (2) Using the identity 5(||b]|*—|a||?) = (a, b—a)+3||b—a|?,

My(y) — My(@) = F6) — £ + 5 (I ~ 12l)
= J") - S+ Ey - 2) — @yt - )+ g -l

Since z € Jf(z*), 0 < f(y*) — f(2*) — (&, y* — x*). Similarly
g € Of(y*) implies that

fh) = f@) < (g, y* — o) < (@, y" —a") + [z —y|*.
Thus
1. B 3 9
0= 517 =2l < Myy) — My(2) = (2, y —2) < 5lly — 2l



Proposition 9 (Property of Py)

Let f be cpc on E. For any x € &, it holds that
@ Any V € 0P(x) is self-adjoint
@ (Vd, d) > ||Vd||? Yde&.

Proof. (1) Consider ¢ : & — R defined by ¢(y) = 1|jy[|> — My(y). It
is continuously differentiable with V¢ (y) = Pf(y). Hence (Vo) (y)
is self-adjoint if it exists. Thus any element of dpPs(z) and that in
OPf(x) = conv(0pPy(x)) is seld-adjoint.

For locally Lipschitz fun. F' : £ — X (finite-dim. Euclidean space),

aBF(x):{ lim F’(z)}, OF (z) = conv(dpF(x)).

Dpoz—ax
2) Let d € & and z € Dp,. Since IS nonexpansive,
Let d € € and D . Si Py i i
(Pr(z +td) — Py(2), td) > | P(z + td) — Ps(z)|?
= (tP}(z)d, td) + o(t?) > [|tP}(2)d + o(t)|?
=

(Pj(z)d, d) > ||P;(2)d||* by letting t — 0 (1)



Let V € OP¢(x). There exists V; € OpPf(z") such that
V="V, k=1, A >0.
For each integer k > 1, 3 2 such that ||z%* — z| < k~! and
1Pf(a™) = Vill < k71
By (1), <P]/c(.flfik)d, dy > “P}(l‘lk)d”2 Taking limits give
(Vid, d) > |[Vid|[*.
Thus

IS AiVid|* = [V,



Moreau decomposition

Theorem 10 (Moreau decomp.)
Let f be cpc and f* be its conjugate. Then

x = Py(r)+Pp(x) Vel
1
llel® = My(w) + My-(2)
For any t > 0,
v = Py(x) +tPpp(x/t) Vz e
2l

Proof. Let z* = 2 — o* with 2* = P¢(z). Now
" =P(zr) & v—a" €df(a") & " €df(x—2a")
& x—2"€0f(2") & 2F = Pp(x).

Thus x = 2* + 2* = Py(x) + Py ().



Moreau decomposition

My(e) + Mye(e) = min{Jlls =2l + Sl — 2l + £(s) + £°(0)}

1
+ 5t =]+ (s, 1)}

v
z
=
—
|
w
|
2
T

1 1 1
= min{Zlls+¢—al + o2} = 32l

Take s = Py(x). We have z —s € 0f(s) & (s, x —s) = f(s) +
f*(x—s). Lett=x—s. Then

1 1
My(@) + Mpo(2) < Slls =l + 5t = o) + (s, 1
1 1 1
= Slls+t—all? + 5ol = Sllall®.

Thus we conclude that My(z) + My« (z) = 3|z
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Directional derivatives

Let X € 8" have the eigenvalue decomposition X = PAP". For a
given index ¢, suppose

Niesi(X) > Nicspr ==X == Aigg, = AB) > Ny
Jy={1<i<n| =AM
where A(¥)’s denote the distinct eigenvalues of X.

Proposition 11 (Lancaster, Numerische Mathematik, 64)

Given i € J, for any 8" 5 H — 0, we have
_T —
Xi(X + H) = Mi(X) = A, (P HPy,) = O(|H|).

Hence the eigenvalue function \;(-) is directionally differentiable at
X with N,(X; H) = X, (P HP,).



Directional derivatives

Let f : R — R be a scalar function. Suppose X € S™ has spectral
decomp. X = PAP’. The Lowner spectral operator is defined by

F(X) := PDiag(f(\),-... fOn) P .

Proposition 12 (Donoghue 74; Bhatia p.124)

The Léwner operator F(-) is (cont.) differentiable at X iff f(-) is
(cont.) differentiable at each \;(X). In this case, the Fréchet
derivative is given by

F(X)H=P [f[ll(A) o (TDTHF)} P’ vHes.

Here given D = Diag(d), fI1(D) e S™ is defined by

fldi)—f(d;) e 5 A
(f[l] (D))” — d;—d; z if dz 7é d]
£(dy) if d; = d;
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Suppose f(t) :=tT = max{0,t}, and

MZA> > A >0> A > > Ay

F(X) = PDiag(\},...,.\}))P" = PDiag(A1, ..., A0, ...

F(X)H =P|Qo (P HP)|P"

1 ifi,j=1,...,r
Qij=9Q xipgy fi=L...rnj=r+l....n
0 ifi,j=r+1,...,n
1,17 Q12

Q% O(n—r) x (n—r)

Efficient computation of F’(X)H should exploit the 0 block and the

all ones block.



Let X € R™*™ (m < n) has SVD

X=U[E 0V =U[x [V, Vo] =TS(X)V,

U e O™, V= W1 VQ:I € O™ with Vl € Rrnxm Vg c %nx(n—m)_
Given an index %, suppose

Oj—g; > Oj—gitl = oo =04 = ... = Ojqy, i= O'(k) > Ot +1
where o(¥)'s denote the distinct positive singular values of X. Define

ap={1<i<m|o;=0® >0}, b={1<i<m|o;=0}

Proposition 13 (Lewis and Sendov: Set-Valued Analysis, 2005)

For any R™*™ 3 H — 0, we have fori =1,...,m
ai(X + H) — 0i(X) — 0i(X; H) = O(|H||?)
Xo; (Sym(Ts, HV o)) ifi € ay

oi(X;H) = - —
S os (T H[V, Vo)) ifi€h



Proof. Let g : R — R be a scalar function s.t. ¢g(t) = —g(—t). The
Lowner's singular value operator at X is defined by

G(X):=TU[g(X) 01V =X, glo) wvl (2)

where ¢(X) := Diag(g(o1),...,9(om)). It is known that

_ 9% o 0
B = | g O || T 0o | P70

where P € O™*" is given by

P=_—1| = _ Z
V2l Vi V2V, SV

Thus differential properties of G(X) can be deduced from those of the
spectral operator of B(X). Therefore, if G(-) is (cont.) differentiable
at B(X), G(-) is also (cont.) differentiable at X with

1{U 0 U]'

B(G'(X)H) = G'(B(X))B(H) YH e Rm™n (3)



0 G'(X)H
(G'(x)H)" 0
H{ +Hy, -H¢
7’1" J—
P'B(H)P = 0 SH |,
_Hls

— P(20 (P'B(H)P))P"

H, = U’T‘[{‘/1 € R™mxm
Hy = UTHV, € Rm*(n—m)

where H{ = L(H, + HT), H{ = 3(H, — HY).

o+t
Q = 0)11T 1T | es™tr, 1 eRP™
O
g(oi) £ gloy) . .
0f = | " oze, ToiEGAOEI=lo.m
g'(o3) otherwise
9(03)

ifo; >0,i=1,...,m

w; g;

g(0) ifo;=0



G(X)H =U[Q o H + Qo Hf] VT + U[(mT) 0 HQ] v
When m < n, expensive to compute Vi € R™*("=m) explicitly. For-
tunately, V5 is not needed explicitly!

[(w1™) o HoVy' = Diag(w)U" HVa V5"
= Diag(w)UTH(I, — V,V{') = Diag(w)U? H — Diag(w)H, V;’



Duality and examples



Duality: A general class
Let X, ), Z be real finite dim. real inner product spaces. Consider
(CCP)  min {h(Az) + 6(Bz)}

beYand A: X - )Y, B: X — Z are linear maps

h:Y — (c0,00], 0:2Z — (—o0,00] are cpc fun.

Rewrite it as min {A(u) + 6(v) | Az —u =0, Bz — v =0}.
Its Lagrangian fun. is

L(z,u,v;y,9) = h(u) +0(v) + (y, u — Az) + (y, v — Bx)

o f )+ (g 0} i {00) + ()}
+ inf {(—z, Ay + B*y)}

T,U,v

The dual, defined by max,cy yez {infx,uv T, U, VY, Y } is

_h*_ _9* i * *—:
yeg{?éz{ (—y) = 0" (=9) | Ay + B*y = 0}
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Duality: TV-norm regularized regression

1
min { [} Az — b2 + X|Beli }, B =

Here h(u) = %|lu —b||%, 6(v) = Al|v[1. Now

h*(—y) = %Hyl\z—(y, b), 0°(=9) =dc(®), C={y|lyllc <A}

Its dual problem is given by
1 2 — * * —
max { = S [lyl2 + (v, b) — do(7) | A"y + By =0}
.l . . _
= min {Jyl2 = (5, b) | Ay + BY=0, |7 <A

20



Duality: semidefinite programming (SDP)

Let @ be a closed convex cone in R™, and X' = S".
(SDP) min{(c, )| Az —beQ,x € SQL_}

Let 6(z) = (¢, z) + sz (), h(u) = dp+q(u). The above SDP can
be written as

min {e(x) +h(Az) |z € X}
Its dual is given by
max { —h*(—y) = 0"(~7) | A'y+7 =0}

0 ifetyest

Now *(—y) = —(y, b)+dq~(y) and 0*(—y) = { oo otherwise

More explicitly, the dual is
max{(b, Y| Ay +z2—c=0,2€8}, ye Q*}
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Duality: doubly nonnegative (DNN) SDP

Let N = {z € S" | z >} (cone of nonnegative matrices).

(DNN) min{(c, x) |ﬂx—5€@,x€§’}r,xeNn}

- min{<c, z) + b3 () L’i_le(’;leQ:Qan}

Let 0(x) = (c, z) + dsn (x), h(u) = dp+q(u). The above DNN SDP
can be written as in the form of (CCP) as

min {9(3?) + h(Az) |z € X}
Its dual is given by max { — h*(—y) — 6*(—7) | Ay +§ = 0}. Now
for y = (y1;92), K" (—y) = —(y, b) +dq-(y) = —(y1, b) +g-(y1) +

Onn (y2). The dual is explicitly given as

max{< >|Ay1+y2+2—6—0 Y1 € Q, yQEN,ZES"}

k¥l



Duality: An even more general class

Let X, YV, U be real finite dim. inner product spaces. Consider

min  0(z) + 3(z, Qz) + (c, ) + ¢(u) + 5(u, Pu) + (d, u)

st. Ar+Bu=1»
Q and P are self-adjoint PSD linear operators on X and U, resp.
A: X =Y, B:U — Y are linear maps
ceX,del,be ) are given data
0:X — (—00,00], ¢: U — (—00,00] are cpc functions

min  0(z) + 3(z, Qz) + (c, ) + ¢(u) + 5(u, Pu) + (d, u)

st. Ae+Bu=b, 2—2=0, u—u=0

(4)
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The Lagrangian function is

0(z) + 3(x, Qz) + (¢, x) + (y, b — Az — Bu)

L(x,u,T,U5y,s,2) =
( :92) {+¢(7)+ L, P + {d, u) + (s, 7 — ) + {2, T — u)

The dual of (4) is defined by

max { inf L(u,z,z,u;y,s, z)}
yeY,se X, zeld \ x,u,z,u

(y, b) + inf; {0(Z) + (s, )} + infy {@(a) + (2, u)}
= max{ +infeex (3(z, Qz) — (A*'y+s—c, z))
+infyer (5 (u, Pu) — (B*y + 2 — d, u))
max (b, y) — 0*(—s) — ¢*(—2) — 3(w, Qw) — (v, Pv)
= st —Qu+A*'y+s—c=0, —Pv+By+z2—d=0 (5)
weW, vel.

where W is any subspace containing Range(Q), and V is any sub-
space containing Range(P).



8

if h & Range(Q)
(w, Qw) if h = Qu

reX

inf {3(z, Qz) — (h, )} = { N

D=

The latter is achieved for any z s.t.
Oz —w)=0 & z € w+ Nul(Q).

In (5), in order to ensure that the primal optimal = can be recovered,
w must at least be in a subspace containing Range(Q).



Convex composite quadratic conic programming:

(QCP) min 6(x) + 3{z, Qz) + (¢, x)
st. Ax—belC, xz€k,

where 6 : X — (—o0,400] is a cpc fun.
C C Y, K CX are closed convex cones
(QCP) obviously includes convex QP in R™ as a special case.

By introducing the var. @ = Az — b and u — x = 0, can rewrite
(QCP) as

min  6x(z) + 5z, Qx) + (¢, ) + 0(u) + d¢(0)

st (g‘)ﬁ(i_o;)(z):(g) (6

B
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Using (5), the dual of (6) is
max (b, y) — 3{w, Qu) — di(—s) — 0*(=2) — 65(~2)
st. —Qw + (A*, I) <

-1 0
(o 50

S=2C
z=1y, y =z Hence

()-(2)

max (b, y) — 3(w, Q) — di(—s) — 0*(—2) — 6t ()
st. —Quw+A*'y+z+s=c, QeW

Noting that d5-(—s) = dx=(s) and §3(—y) = dc=(y), we get

max (b, y) — <w Quw) — 0*(—=z)
st. —Qu+Ay+z+s=c, QeW
seK*, yec*



Examp. (QSDP with bound constraints)

min (X, OX) + (C, X)
st. ApX =bp, AX>b, XeS' XeP

where P ={X € S | L < X < U} is a simple closed convex set.

min Jp(X) + $(X, QX) + (C, X)

s.t.

AE bE I mr _ n
[AI}X—[bI]eC._{OmE}xRJF, Xek=8%
~—— ~——

A b

max —65(—2) — 2(W, QW) + (b, yg) + (br, yr)

s.t.

—OW + Ay + Ajyr + S+ 2 =C

Sek*=8t, Wew, y:[ZE]eC*:RmExRT
1



Examp. (Regularized matrix least squares problem)

. 1 2
min =||BX —d||* + p|| X ||«
R 2” | Pl X ||

st. AX =0, XeP={X]||Xa|o <a}
Let Q = B*B, C = —B*d, 0(X) = p||X||«, #(X) = dp(X). We get

min (X, QX) + (C, X) + &[|d]|® + 0(X) + ¢(X)
st. AX =10

Its dual is given by

max  —3(W, QW) + (b, y) — 0*(=S) — ¢*(~2) + 3] d||?
st. —QW +A'y+S5+2=C, WeR™™

6*(S) = 35,(S), By = {|IS]l2 < p}. Let € = d — BIV.

max —3€]2+ (d, &) + (b, y) — 6*(~2)
st B+ Ay+S+2=0, |Sla<p



Exercise

Consider the separable convex programming

min 61 (y1) + -+ Op(yp) — (b1, y1) — - — (bp, Yp)
st. Ajyn+-+Ajyp=c

where 60; : J; — (00, 00] are cpc fun. Show that its dual is
max{ — (e, ) — 05 (b1 — Arw) — - — 035(b, — Apm)}

— min {(c, x) +07(s51) + - + 05 (sp)
A S1
s.t. : x+ : =b
Ap Sp

A problem with 2 blocks: = and (s1;--- ;s;)
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General convex composite QP

Examples fit the following general convex composite model:

ze1r)r(11n {9 T -|-f(£]§‘1,...,l'm)‘I‘d)(yl)‘l'g(yla"'?yn)}

st Yoo Az + Z?Zl Biyj=c — Az+By=c
r=(21,...,&m) EX =X X ... xX Xy,
Y= (Y1, - Yn) EV =1 X...x Wy
0: X — (—00,00], ¢ : Y1 — (—00,00] are proper closed convex
f: X =R, g:Y — R are convex quadratic functions

A+ Z = X, Bj : Z = Y; are given linear maps.

(CCQP) min  {6(a1) + f(@) + 6(s1) +9() | A'x + By = c}

zeX yey

a1



Least squares conic programming: SGS, SNCG, Danskin-type
theorem
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Least squares conic programming

Let K be a closed convex cone in a real finite-dim inner product space
X. Given G € X, consider

. 1
min {§|\X — G2+ p(X) | AX = b}

where p(X) = dg(X), A: X — R™ is a surjective linear map (hence
AA* is nonsingular). Its dual is

. 1 * 2
—rrsl}yn{H(S)—FiHS—i-A y+ G||* — (b, y)} + const

0(S) := p*(—S) = dx~(S). It has the form

min {0(5) + 4(5.) }

S,y

with quadratic function

a(8,9) = ((Si9), AS;y)) — (Siw), (~Gsb— AG)), @ = [i fA]

a4



A symmetric (block) Gauss-Seidel decomposition theorem

Consider convex quadratic problem:
min{&(azl)—i-q(a?) |z = (z1; 225 ...;25) €EX =41 X ... % XS} (7

Convex quadratic function ¢(z) := 3(z, Qz) — (b, z)
Closed proper convex function 6 : X} — (—o0, +00]

Consider the following block decomposition

Q11 Q12 - Qs x1
*
12 Q22 T Q?s T2
Qr =
s 9D o Qs s
Here, we further assume that Q;; = 0Vi=1,...,s.

Write Q=U*"+D+U
D = block diagonal part, U = strictly upper triangular part.
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A symmetric (block) Gauss-Seidel decomposition theorem

Define Q565 : X — X
0°6S — yp~y* (symmetric Gauss-Seidel decomp.)
Given T € X, define
" = argmin, {9(1:1) +q(x) + %H:II — 57”29565} (8)

Next theorem: can compute z* using one cycle of symmetric GS!

If 0(x1) is absent, we get the classical block symmetric GS iteration.
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Theorem 14 (Li-Sun-T.)
It holds that Q + Q%%° = (D +U)D~Y(D 4+ U*) = 0

Backward GS (s — x5—1 — -+ — x2). Fori=s,...,2, compute
z; = argming 0(Z1) + q(T<i-1, i, 75, )

= Q;'(bi— Z;;ll Q5 — Y i1 Qi) (linear system)
Forward GS (ry — x9 — -+ — xs). Fori=2,...,s, compute
zf = argmin, 6(z1) + q(w1,7%,) (opt. prob. involving only 1)
3::“ = argmin,, ﬁ(xf) + q(x;_l,mi,m/zprl)

= Q' (b _Z Q5] —Z;Ziﬂ Qi)  (linear system)

Inexact computation is also allowed! So can use PCG to solve large
linear systems.



Inexact SGS decomposition theorem

Theorem 15 (Li-Sun-T.)

Backward GS: Fori = s,...,2, compute

g = QF'(bi+0,— 3001 Qi — Yimit1 Qi)
Forward GS: Fori=2,...,s
xry = argmin, 0(z1)+ q(xl,m;Q) — (67, =)

gt = OGB48 — X Qrl — Y0 Qi)

§1, & are error vectors. In this case, 1 is the exact solution to a
slightly perturbed proximal problem:

. 1 ~
o = argmin, {9(:131) +q(x) + 5“3” - $|’295GS = (=, A(6/’6+)>}

A8, 6%) = 6T +UD (5T — o).



To avoid solving the ith problem in forward GS sweep fori =2,... s,
we may try to estimate x;r using z;, and the corresponding error
vector (5i+ is given by

i—1 A~k —
5 =0 + > ji($;— - Zj).

One may accept such an approximate solution ;v:r = 1z if the error
vector satisfies the condition ||8;7|| < ¢||&!|| for some constant ¢ > 1,

say ¢ = 10.
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Proof. The optimality condition for (8) is

4t

0
(Q+QSGS)x=b+ Q335 — v, = : ;7 € 00(x1)

0

Since D > 0, both D +U, D+ U* are nonsingular. From the com-
putation, we have

(D+U) = b-U'Z

(D+U*r = b—Us'—v=Dz'+UT—~
Now one can verify that

(Q+ Q%5S)0 — b+ HSSz — (D +UYD 'y

By the special form of v, we have (D+U)D~!y = . The optimality
condition is satisfied. O



An inexact accelerated proximal gradient (APG) method

One can use an inexact APG method to solve (7). Consider

min {F(z) := p(x) + f(2)}

with [V f(z) = V()| < Lllz —yll, Va,yeX.
p: X — (—o0,00] is a cpc fun.

Algorithm. Input ! = 20 € dom (p), t; = 1. Iterate

1. Find an approximate minimizer
. 1 _ _
o* & argmingex { () + (24T F(@), 2=+ (o—7", Hy(—a") }
where Hy, > 0 is an a priori given PSD linear operator s.t. the blue part

majorizes f(x) for all z € X

1+\/21+4ti' FhHL — gk (tk—l)(xk _ gk,

2. Compute tp41 = [

Note ¢ ~ k/2 for k large.
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An inexact APG

Consider the following admissible condition

VF(@F) + Hi(ah — 2%) + 4% =: 6% with |1, /200 <
\ftk

where ¥ € 9p(x*) = the subdifferential of p at z*
{er} is a nonnegative summable sequence.

Theorem 16 (Jiang-Sun-T. SIOPT 2012)

Let x* be an optimal solution. Suppose the admissible condition
holds and Hjy_1 = Hy = 0V k. Then

0< F(z®) — F(z*) < (k:—i—l)

5 (V7 + &)

where T = §||z° — z*||3, , & = Z?:l €j



The application of inexact SGS and APG to solve (7)

For the problem (7): min{f(z1) + ¢(z) |z € X = &} x -+ x X }.
We have p(z) = 0(z1), f(z) = q(z) = 3(z, Qz) — (b, z). Pick
Hyp =H := Q+ Q%55 the APG subproblem is given by
1
k : =k

AN argmm{e(l‘l) +q(x) + §||:U — I ||2QSGS}

which can be solved by one cycle of inexact SGS and
VFE") + Ha" —2F) +F = A, 67)

where v¥ = (7¥:0;---;0) and 7¥ € 90(x¥). The admissible cond. is
satisfied if

HL2A 8,6t < S
A6 <

1%



Least squares conic programming
Given G € X, consider
1
(P) min{|X - GJ* +p(X) | AX = b}

where p(X) = dg(X), A: X — R™ is a surjective linear map (hence
AA* is nonsingular). Its dual is

1
(D) - min {9(5) + 2|l + A'y + G2 = b, y>} + const
S,y 2

0(S) :=p*(—S) = g+ (S). It has the form (7) with

q(S,y) = ((S;y), Q(S;9)) — ((S;v), (=G50 — AG))

[ sgs | AT(AA)TIA 0
Q_[AAA*]’Q _[ 0 0

R4



Inexact ABCD for least squares conic programming

The APG subproblem is given by

(8*,0) = argmin{0(5) + a(S.1) + 2(S53) — (5:7)* 3505 }

Inexact ABCD. Input S' = 8% >0, t; = 1. Iterate
1. Compute based on SGS:

1 oo loa *
gt o~ argmmy{§||5k + A"y + G|}
i argminS{H(S) + %||S+ A*y’“*% + G||2} — HK*(_A*y’“JF% - G)
! .
TR argmlny{§||5k+.,4 y+G|*}

2. Set tiy = (SR = (8,)F + (B22) ((S,0)F - (S,)4)).

tet1
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Semismooth Newton CG (SNCG) method for least squares conic

One can attempt to directly solve the dual problem:

. 1 * 2
min {0() + IS + A%y + G| = (b, 1) }

Y

_ myin{ ~ (b, y) +min {p*(=S) + 315 + A y+G||2}}

= myin {@(y) = —(b, y) + Mp-(A*y + G)} (9)

where M« (-) is the MY regularization of p*. Let P,(-) be the proximal
map for p. Its optimality condition is

0=V(y) = —b+ AVM,:(A*y + G) = —b + AP, (A*y + G)

[Qi, Sun, SIMAX 2006] studied SNCG method for solving nearest
correlation matrix problems where §(5) = Ilsn, A(X) = diag(X),
b =1, and demonstrated its impressive efficiency!
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A SNCG method: for the case p = dgs,

Solve V&(y) = b+ Allsr (U) =0, U =A"y+G.

V&(y) is not differentiable, but is strongly semismooth [Sun-Sun,
MOR 2002]. At current iterate 3/, solve a generalized Newton eq.

HAy ~ —V(y'), where HAy = AH’Si(Ul)[A*Ay] (10)

From eigenvalue decomp: U =QDQT withdy > --->d, >0 >
dry1 > -+ > dy, we choose

I (UH[M] = Q(Q 0 (QTMQ))QT, (11)

where Qij = (ClzJr - dj)/(dz - dj) For Y = {1,...,7“} and vy =
{r+1,...,n}, we have

Eyy Qg .
Q= (we call such structure 2nd order sparsity)
Q5 0

The structure in € allows for efficient comp. of rhs of (11), and hence
matrix-vector multiply for CG in solving (10)
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SNCG algorithm

Algorithm: Pick n € (0,1), 7 € (0,1], 71,72 € (0,1) and 3° €
R™, iterate the following steps.
1. Pick V; € 02®(y7), set ¢; = 7 min{ry, |[V®(y7)||}. Apply
the PCG to compute an approx. solution d’ for

(Vi +el)d = -Ve(y) (12)

st. |(Vj+gDd +Ve(y)| < nj :=min{n, [VO(’) "7}

2. Fix¢ €(0,0.5), p € (0,1). Find smallest nonnegative integer
s s.t.

() + p°d’) < (YY) + <p*(VO(y), d).

Set ¢/t =gy 4 p°d/.

PD(y) = AIP,(A*y + G)A*

By [Clarke p.75], 82®(y)H C 82®(y)H for all H € X.
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Convergence of SNCG algorithm

Assume that P,(-) is strongly semismooth and {y | ®(y) < ®(y°)}
is bounded.
Theorem 17

Let §j be an accum. point of the seq. {y’} generated by SNCG
Algo. for solving (9) s.t.

IVe(y’) + (V; + e D) || <u; V. (13)

Then y is an optimal sol. to (9). If constraint nondegeneracy
condition holds at X = A*y + G, then {y’} converges to ¥, and

Iy =7l = O(lly” - glI™*™).

A

Proof. By the Lip. continuity of P,, easy to show that V®(%)
0. Under constraint nondegeneracy, for any V; € 0*®(y), 3 W5 €

~

OP,(X) s.t.
V‘qj = .AWQ.A* = 0.

Then, for j sufficiently large, {||(Vj+¢;1)~1||} is uniformly bounded.

1e)



Convergence of SNCG algorithm

For any V;, 3 W, € 0P, (A*y/ 4+ G)) s.t. V; = AW, A*.
Iy +d =gl < Ny == (V) + ;)7 V)|
+IV +e D IVeE) + (V) +e D) |

1 + D) (IVe() — Ve@) - Vity' -9l +=5lly? — 7l + ;)

IN

IN

O (AN Mg Ay +G) = gy (AF+ G) = Wy(A* (g7 — 7))
+O0(m|IVe))lly’ — gl + Ve )I™T)

O(| A* (v —9)|I*) + --- (since P, is strongly semismooth)
Oy’ =91

which implies that for all j sufficiently large,

IN

y —g=-d +O(|dI'*") and |[|&’|| = 0.
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Convergence of SNCG algorithm

(Vo(y), d) +{d, (V;+e; ) d) < ||
VeI ] = [IVey’) - Ve@)| 4|l
O(||d||*™™)  for j sufficiently large

IN

IN

which, together with the fact that ||(V;+¢;1) 7! || is uniformly bounded,
implies 3 a constant § > 0 s.t.

—(VO(y), &) > §||d’||* for j sufficiently large.

Since V®(-) is (strongly) semismooth at y, from [Facchinei95, Thm
3.3 & Remark 3.4], we know that for ¢ € (0,1/2) and j sufficiently
large,

Oy +d) < B(y') + (VO(y), #)
Hence for j sufficiently large,
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Least squares SDP with bound constraints

Let P={X €S" | L <X <U}. Consider

min %HX —G|?
st. AX)=b, X €S, X € P,

The dual is given by

1
~ min {5;;(_2) + 0%, (=) + 312+ S+ Ay + GIIP - b, y>} + const

It has the form:
min {F(Z, S,y) = 0p(~Z) + 05, (~5) + 6(Z.5.9) |

Here ¢(Z, S, y) is convex quadratic fun.
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Elimination of a block via Danskin-type theorem

Consider block vectors © = (z1,22,...,25) € X 1= X} X Xy -+ X Xy

min{p(z1) + ¢(2) + ¢(z,z) | z € Z, x € X}
= min{p(z1) + f(z) |z € X}

where p(-), ¢(-) are cpc functions, and

f(z) = min{o(2) + o(2,2)}

z€Z

z(z) = argmin{- - - }

Assume that ¢, ¢ satisfy the conditions in the next theorem, then f
has Lipschitz continuous gradient Vf(x) = V; ¢(z(x), x).
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A Danskin-type theorem

Let ¢ be a lower semi-continuous convex function

¢(-,+) 1 Zx X — (—00,+00) is a convex function

¢(z,-) : © — R is continuously differentiable on € for each =
V:é(z,z) is continuous on dom(yp) x

For every o’ € Q, z(2') is unique

Consider the convex function f : Q — [—00, +00) defined by

flo) = inf{p(z) + o(z,2)}, 2 € (14)

Condition: The minimizer z(z) is unique for each x and is bounded
on a compact set.
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A Danskin-type theorem
Theorem 18

(i) If 3 an open neighborhood N, of x such that z(-) is continuous
on N, then f is continuously differentiable on N, and

Vi) =V.o(z(a'),2'), V' eN,.

(i) Suppose that z(-) is bounded on any nonempty compact subset
of N'. Assume that for any z € dom(p), V,¢(z,-) is Lipschitz
continuous on N and 3 ¥ = 0 such that for all x € N,

Y=H, VHE 1)

Then, YV f(-) is Lipschitz continuous on X with the Lipschitz
constant ||X||2 (the spectral norm of X2) and for any x € X,

S=G, YG e, f(x),

where 02, f(z) denotes the generalized Hessian of f at x.



Applying Danskin-type theorem in APG

min{p(z1) + ¢(2) + ¢(z,z) | z € Z, x € X}
Apply inexact APG to
min{F(z) := p(x1) + f(z) | z € X}

where f(z) = min.{p(z)+¢(z,2)}. Since Vf(-) is Lipschitz cont.,
3 PSD linear operator Q : X — X such that

Q =G, VYGedf(z), Vzei.

and Q;; = 0 for all 7. We have

£() < axl@) = F@) + (V@) © — ) + Sl — 2¥1
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An inexact accelerated block coordinate gradient descent method

Algorithm 2. Input 7! = 20 € dom (p) x Xy x --- x Xy, t; = 1. Let
{er} be a nonnegative summable sequence. lterate

1. Compute via inexact sGS

28 = 2(z%) = argminz{go(z) + o(z, Ek)} (elimination via Danskin
, 1 _ _

2" ~ argmin, { p(e1) + (@) + Sl — 7255 — (A(0,5"), @) |

where the error vectors g’“, 8% incurred in the forward and back-
ward GS sweeps satisfy

~ €L
max{|[6"|], [|4]|"} <
V21,

1+4/1+4t3  _ _ _
2. Compute tpy1 = —5—F*, Tl = oF 4 (%)(ﬂ“ — k1),
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An inexact accelerated block coordinate gradient descent method

Theorem 19

Let H = Q+ Q%% and 5 = 2| DV/2|| + |H~/2||. The sequence
{(2*,2*)} generated by Algorithm 2 satisfies

0< F(z) - F(z*) < ———

where T = 1[|2® — 2*|3,, & = YF_,



An inexact ABCD for least squares SDP with bound constraints

For the dual problem: p(Z2) = 65(—Z), p(S) = 5;1(—5),

$(Z;8,y) =312+ S+ Ay + G| = (b, )
ZF = argminz{p(Z) + ¢(Z; (S, 9)*)} = —Proxs:, (5F + A*§* + G)
=TIp(S* + A*9* + G) — (S* + A*¥* + G)

zF+ SF+ A+ G

Vf((g’yg)k) = V(S,y)‘b(Zk; (Sv,g)k) = .A(Zk 4Gk +.A*27k e)

I A
A AA*

(S, y) = 3|1Z2F + S+ A"y + G2
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Inexact ABCD for dual LSSDP with bound constraints

Step 1.
(Danskin) z* = argmin,{F(Z, S*,y*)} (Projection onto P)

yh = argminy{F(Zk, Sk, y) — <§k, y)} (Chol or CG)

(SGS) Sk = argming{ F(Z*, S, Ak)} Projection onto S")

yh = argmlny{F(Z’c Sk y) — y)} (Chol or CG)

1+4/1+4¢2 _
—Y5—=" and B = %=l Compute

Step 2. Set ty41 = o

(S, 9)" " = (1+ Br) (S, )" = Br(S,y)*
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Numerical experiments

@ We compare the performance of our ABCD against the following
methods for solving LSSDP:

e BCD, APG
o eARBCG (an enhanced accelerated randomized block coordinate
gradient method) [Lin, Lu, Xiao, SIOPT 2015]

@ We test the algorithms on LSSDP problem (P) by taking

G = —C for the data arising from various classes of SDP of the
form (SDP).
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SDP problem sets

Let P={X €S8"| X >0}.
@ SDP relaxation of a binary integer nonconvex quadratic (BIQ)
programming:

min %(Q, Y)Y+ (c, x)
st. diag(Y)—2=0, a=1,

eSt, XeP

@ SDP relaxation 6, (G) of the maximum stable set problem of a
graph G with edge set &:

max{(ee’, X) | X;j =0,(i,j) €&, (I, X) =1, X €S, X € P}
@ SDP relaxation of clustering problems (RCPs):
min { (W, I - X) | Xe =¢,(I, X) =K, X € S, X € P}
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SDP problem sets

@ SDP arising from computing lower bounds for quadratic assign-
ment problems (QAPs):

v:=min (BRAY)
st YL Yi=1 (I,YY)=¢; V1<i<j<n,

E Y9 =1 Vi<i<j<n
(E, Jj<n,
Yes¥ YeP

where P = {X € 8" | X > 0}.

o SDP relaxation of frequency assignment problems (FAPs):
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Numerical results

Stop the algorithms after 25000 iterations, or

n = max{ni, e} < 1075,

_beAX] o x-y]
where 1 = T 2 = X

X =Tlgy (A'y + Z +G), Y = Hp(A'y + S + G)

problem set (No.) \ solver | ABCD | APG | eARBCG | BCD
0. (64) 64 | 64 64 11
FAP ( 7) 7 7 7
QAP (95) 95 | 95 24
BIQ (165) 165 | 165 | 165 65
RCP (120) 120 | 120 | 120 | 108
exBIQ (165) 165 | 141 | 165 10
Total (616) 616 | 592 | 545 | 201
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Detailed numerical results

Problem mpg, my n time (hour:minute)
n ABCD | APG | eARBCG | ABCD | APG | eARBCG
18945, 0
1tc.2048 0.87]9.87 | 9.47 | 7:35 | 22:18 | 31:38
2048
2118,0
fap25 ’ 927 8.1-7]9.07 | 0:030:11 | 0:13
2118
1393,0
nug30 ’ 9.67]9.97 | 1.46 | 0:10] 1:12 | 7:21
900
1393,0
tho30 ’ 9.9-7|9.9-7 | 1.6:6 | 0:13 | 1:17 | 3:51
900
501,0.37M
ex-gkabf £01 9.8-7]1.6-69.9-7 | 0:24]2:26 | 4:00
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Performance of ABCD

Performance Profile (64 8,, 7 FAP, 95 QAP, 165 BIQ, 120 RCP, 165 exBIQ problems) tol = 1e-06

1 T - T T ™ - T —
-
2d
p

(100y)% of problems

6
at most x times of the best

Figure: Performance profiles of ABCD, APG, eARBCG and BCD on [1, 10]
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Proximal-point and augmented Lagrangian methods
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General convex composite programming

Most applications fit the general convex composite model:

L {0(z1) + f(x1, - zm) + 0(w1) + 9w, un) }

(15)
s.t. Z?il Az + 2?21 B;yj =c — A'z+By=c

T=(T1,...,&m) EX =1 X ... X X

Y= W1 sUn) EV=D1 X ... XV

0:X — (—00,00], ¢ : Y1 — (—00,00] are proper closed convex
f:X >R g:Y — Rare convex Lip. cont. functions

A Z = X, Bj: Z — Y; are given linear maps.

(6CCP) min {0(x1) + f(2) +6(u) + g(y) | A'w+ By = e

TEX,YEY
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Augmented Lagrangian method for (GCCP)

Augmented Lagrangian function: Let o € (0, +00).

Lo(2,y;2) = 0(x1) + f(2) + d(y1) + g(y) + (2, A"z + By — ¢)
+5 || Az + By — |

Augmented Lagrangian method (ALM):
Given an initial point 20 € Z, perform the following iterations:

(@M = argmin Lo(x,y;2%), (16)

A= R g o (AR By )

where 7 € (0,2) is the steplength.

But difficult and expensive to solve the inner subproblems exactly or
to high accuracy, especially in high-dimensional settings.

Sometimes it is easier to solve for x and y alternately, which motivates
the use of ADMM. But they can still be difficult to solve.
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Generic 2-block semi-proximal ADMM (sPADMM)

Given cpc functions p, q. Consider

(primal)  min{p(z) + q(y) | A"z + By = c}
(dual) —min{{(c, z) + p"(—Az) + ¢*(—Bz)}

Lo(z,y;2) = p(x) +q(y) + (z, A'x+By—c)+ $||A*z+B*y—|]?

Pick § =0, T = 0 and 7 € (0, 25Y3). Iterate
1. Comp. zF*! = argmin{L,(z,y*; 2%) + S|z — 2*||%}
2. Comp. ¥ = argmin{C, (e, y: %) + Ly — 913}
3. Comp. 2Kl = 2F 4 ro(A*z + B*y — ¢)

Classical version: S =0, T = 0 [Glowinski,Fortin,Marrocco,Gabay,Mercier].
Gabay showed that classical ADMM (for 7 = 1) is a special case of Douglas-
Rachford splitting.

Eckstein and Bertsekas proved that DR splitting is an application of PPA
on the dual via a specially-constructed splitting operator.
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Convergence of generic 2-block semi-proximal ADMM (sPADMM)

By the monotonicity of dp, 3 PSD operator ¥, s.t.
=& z—a) >z -2}, VEedp(x), ' €dp()

Let X, be similarly obtained.

Theorem 20 (FPST, SIMAX 2013)

Assume that constr. qualification holds and
Y, +S+0AA* -0, 2,4+T +0oBB" >0

Then the seq. {(z*,y*)} converges to an optimal sol. of (primal),
and {z*} converges to an optimal sol. of (dual).

If y-part is absent, the convergence holds under T € (0, 2).

Proof is motivated by that of Glowinski, and Fortin & Glowinski for
classical ADMM where S = 0,7 = 0.
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Recent progresses

On designing convergent multi-block ADMM-type methods without
restrictive assumptions.

@ Direct extension of 2-block ADMM to multi-block setting is not
guaranteed to converge [Chen,He,Ye,Yuan]. Convergent variant
with Gaussian back substitution was designed in [He, Tao,Yuan]

e ADMM3c [Sun, T., Yang]: only requires an inexpensive extra
step per iteration but is theoretically convergent and practically
even faster.

o SCB-sPADMM and sGS-sPADMM [X.D.Li, Sun, T.]: can handle
(15) where f and g are quadratic.

e Majorized iPADMM [M.Li, Sun, T.]: f and g are not necessarily
quadratic functions; indefinite proximal terms.

Goal: to design inexact ADMM-type methods for solving the GCCP
(15) in the multi-block and high-dimensional setting.
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Majorized augmented Lagrangian function

Can consider f and g which are convex differentiable fun. with Lips-
chitz cont. gradients.

There exist self-adjoint PSD operators with flf = Xy, i\}g = Xg4 such
that for z,2' € X and y,yy' € Y,

fa) = f@) + (V@) 2 —2') + gz =23,

f(@) < Jla;al) = f(@) + (V@) =) + gllz =213,

Similarly for g(y) and g(y;v').

At a given (¥, y*, 2), consider the majorized augmented Lagrangian
function defined by:

Lo(z,y;2%) < Lo(x,y;25) i= 0(a1) + fla;2%) + d(n1) + (y; vF)
+<zk, Az + By —c) + §|| A%z + By — c||?

~

If f, g are quadratic fun., by taking f]f = Xy, Xg = Xg4, and there is no

majorization.
A4



Choose self-adjoint PSD linear operations S : X — X, 7 : Y —= Y
such that

Nf::§f+S+O'AA*>-O, Ng::§g+T+UBB*>-O.

Suppose {(z*,y"*, %)} is a sequence in X x Y x Z. Define

Fy(x) := 0(21) + 3 (x, Nya) — (%, @) = Lo (2, 5% 25) + §||o — |3 + const
Gily) = o(m) + 5y, Ngy) — (I8, 9) = Lo (241, y:2%) + §ly — y¥ |13 + const
where

—lfc = V f(aF) + A2F — Npak + g A(A*2* + B*yF — ¢)

—l’; = Vgy*) + BF — Ngyk + oB(A*zF 1 4+ Bryk — ¢).
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An inexact 2-block sSPADMM (imsPADMM)
Algorithm. Choose (2°,3°, 2°)

. Let {ex} be a nonnegative summable seq.
Perform the following steps at kth iteration.

1. Compute 2**! and d¥ such that

~ 1
okl o ghtl = argminm{Fk(x) = Lo (2, 9" 2") + §||:1: - xk||%}

di € AFL (™) with [N 2db < .

(17)
2. Compute y**1 and d’?j such that
Y e g = argming { B (2 s 20) + Sy — oI )
= argmin, {Gy(y) + (eBA" (2" — "), y)}
db € DG with [N 2db| < e (18)

3. Compute 2kt = 2k p 7o (A* b1+ B*yF+1 —c) with fixed steplength

7€ (0,(1+v5)/2)

F1oY



An inexact majorized 2-block sSPADMM (imsPADMM)

Proposition 21

[Bound difference between (x**1,y*+1) and (zF*1, 4*+1) in terms
of error tolerance|

Let {(2*,y*, 2F)} be the seq. generated by imsPADMM, and {z*},
{y"*} be defined by (17) and (18). For any k > 0, we have

2" — 2y <er, N9 =, < ek,
1 1
where 0 := 1+ o||Ng *BA*N, ?|.

Theorem 22
Suppose f and g have Lipschitz cont. gradients, and

Y +S+0AA" -0, X+ T +0BB* - 0.

Suppose constraint qualification holds, i.e., 3

(z,y) € ri(dom(p) x dom(q)) s.t. A*z + B*y = c. Then {(z*,y*)}
converges to an optimal sol. of (15) and {z*} converges to an
optimal sol. of the dual.



sGS-imsPADMM for solving GCCP (15)

Algorithm 2. Choose step-length 7 € (0, (1+/5)/2), {éx} a nonnegative
summable seq. Perform the following steps.

[Step 1a] (Backward GS sweep) Compute for i =m,...,2,

.’if+1 ~ arg mil’lziexi {,C (xlil 1,$z,$§4{+1’yk) ||x’b - ‘rk|

y

B € 00 Loty B BEEL ) 4 Si(ET — b with [15F] < 2.

i

[Step 1b] (Forward GS sweep) Compute for i =1,...,m,

. P - 1
2 arg ming, ey, { Lo (0552 @i ni0, ") + gl — ofI3,

0F € O, Lo (a1 2l ™ E5ii1,0F) + Si(af ! — 2b) with |07 < 2.
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sGS-imsPADMM for solving GCCP (15)

Algorithm 2 (Continued).
[Step 2a] (Backward GS sweep) for j =n,...,2,

~k+1

g A~ arg ming, oy, {Ea (z*

1
1k ~k+1 k
* yY<i—15 yj’yZ-;Jrl) + §||yJ — Y ||2TJ}
%k € ayjﬁo($k+layéj-bﬂf—i_lv?jg_iﬂ + Tj@;ﬁ_l - Z/f) with H:YfH < E.
[Step 2b] (Forward GS sweep) Compute for j =1,...,n,

. " ) 1
Yyt & arg miny, o, {Ea(ff’““,ygh,yj,yiﬁl) + 5l = yfIIQTj}

)€ By, Lo (@ Ly G ) + Ty T — yi) with (|9 < &

[Step 3] Compute

L= 2k L ro (AT 4 Byt — o).
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sGS-imsPADMM for solving GCCP (15)

Denote 6F = (0%,...,0%), 6% = (8%,...,6%). Similarly for 5%, ~*.

Proposition 23

Llet My =5;+0AA*+S M, =5, +cBB*+T. Then
f f g g

SGS SGS
Npi= My + M3 =0, Nyi= Mg+ M7% =0
The sequence {(2*,y*, 2F)} generated by sGS-imsPADMM satisfies

k r (k1 ok Lipkt+l _ k|2
d” Eaag{ﬁcr(x YY)+ gl “5+Mscs}
5 € B, {B (1, p4%1) 4 1A M2, o)

_1 _1
with ||N; 2db|| < kéx,  [INg 2dy]l < W&

where the const. x depends on m and M/ (similarly for )
0 1= 6 MYMETLE = 8, d5 1= 7 + MIND) (o - 55)
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sGS-imsPADMM for solving (15)

The seq. {(z*,y*, 2*)} generated by sGS-imsPADMM can be viewed
as a seq. generated by imsPADMM with specifically chosen semi-
proximal terms:

S=8S+ M, Ti=T+M.

In particular, it always satisfies the admissible cond. (17) and (18) if
we choose the summable seq. {e} such that e; := max(k, &)ék.

@ sGS-imsPADMM: an implementable approach to handle high-
dimensional convex composite conic optimization problems.

@ imsPADMM: the compact formulation can facilitate the conver-
gence analysis of the sGS-imsPADMM.

@ Cost saving can be done as before for the forward GS sweeps.
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ADMM+ = our sGS-sPADMM applied to dual DNN SDP problem:
min{—(b, y) | Ay +S+2Z=C,5€S},ZcN"}

ADMM2 = sGS-sPADMM applied to reformulated dual prob:

min{—(b, y) | —A'y+U+S5=CU—-2=0,S€8S},ZcN"}
ADMM3g = 3-block ADMM with Gaussian back substitution [He et al]
applied to dual

sPADMM2-prim = sPADMM applied to reformulated primal prob:
min{(C, X) | AX =b,X -V =0,X €S},V eN"}.

ADMM-prim = classical ADMM applied to reformulated primal prob:
min{(C, X) | AX =bX-U=0,X-V=0,U€cS",VeN}

Performance Profile (36 6,, 5 FAP, 16 QAP, 83 BIQ, 32 RCP problems) tol = 1e-06

— ADMM+
= = = ADMM2 B
-+ ADMM-Prim
+  ADMM3g
SPADMM2-Prim

(100y)% of problems

5 6
atmost x times of the best

Figure: Performance profiles of various ADMM-type methods



Application of inexact SGS-ADMM in
distance weighted discrimination (DWD)



Binary Classification Problem

n training samples: (z;,y;), i =1,...,n
z; € R%: d-dimensional feature vector
y; € {+1,—1}: corresponding class label.

In linear discrimination: separate the vectors in the two classes by a
hyperplane H = {z € R? | wTx + B = 0}, where w € R? is the unit
normal and |G| is its distance to the origin.

For binary classification:
yi(B+alw)>1-& Yi=1,..,n,

where £ > 0 is a slack variable to allow the possibility that the pos-
itive and negative data points may not be separated cleanly by the
hyperplane.

In matrix-vector notation:

ro= ZTw4+ Py +€ > 1

where Z = X diagy € R?" and 1 € R” is the vector of ones.
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Residuals, r / /

Support Vectors , Y
/4
V4 /

Class -1

Class +1

Normal Vector
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Support Vector Machine (SVM) vs. DWD

In SVM, w and § are chosen by maximizing the minimum residual:

max{(S—C<l, & | 2w+ By +€> 01, £>0, wlw < 1}
where C > 0 is a parameter to control the penalty on £.

In DWD (Marron, Todd and Ahn, 2007), w and /3 are chosen by
minimizing the sum of reciprocals of the r;'s:

n

Zl.+c<1,§> r=ZTw+By+& r>0, >0

min — T
=1

wlw <1, weR?

It is proposed to avoid data piling at the supporting planes. The above
DWD problem can be transformed to a second-order cone problem.
Hence can be solved by interior-point methods.
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A generalized DWD model

min  (r, &) := >, 04(r;) + Cle, &)
st ZTw+By+&—r=0 (19)
Jwl| <1,£>0

where e € R™ is a given positive vector such that |le|.c = 1, and
e; > 0 is a nonuniform weight on the penalty term for each ;.

L ift>0,

0,(t) =
a(?) oo ift<0.

q > 0 with most interested values 0.5, 1,2, 4.
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DWD-dual

Proposition 24

The dual of problem (19) is given as follows:
. -
—min {\I!(a) = Zal| - ﬁZaf |0 <a<Cely, a)= 0}(20)
i=1
where Kk = %qu%.

The feasible regions of (19) and (24) both have nonempty interiors.
Thus optimal solutions for both problems exist and they satisfy the
following optimality conditions:

ZT’U}—Fﬁy—i—f—T:O, <y7a>:0a
r>0 a>0 «a<Ce €£2>0, (Ce—a, &) =0,
ai:ﬂ%, i=1,...,n,

7

either w = ”23”, or Za =0, |w|?® < 1.




An equivalent formulation

Rewrite the primal model (19) as:

min Y 0,(ri) + Cle, €) + p(w) + dry ()
i=1
s.t. ZTw+By+€6—r=0, weR? r ek,
where B = {w € R? | |jw|| < 1}.
Introducing an auxiliary variable v = w:
min 371, 04 (ri) + Cle, &) + dp(u) + drn ()
st. ZTw+By+&—r=0 (21)
D(w—u)=0, w,ucR? BeR, récR,

where D € R%4 s a given positive scalar multiple of the identity
matrix which is introduced to scale the variables.

This is a linearly constrained nonsmooth convex programming prob-

lem with three blocks of variables: (w, 3), r, (u,§).
Q9



An inexact sGS-ADMM for solving (21)

Augmented Lagrangian function associated with (21):

Lo(r,w, B, usa, p) = 3202, 04(ri) + Cle, &) + 0p(u) + Ory (€)

+gl —r+ZTw+ By + £ — o al? + G D(w —u) — a7 pl? — 5o llall? = 2ol

Given an initial point, performance the following steps in each itera-
tion. Treat (r,w, 3) as first block, (u,£) as second block.

Step la. Compute
(5 e minug { Lo (0,5, €%, ufs o, o) |

Step 1b. Compute "1 & min,crn { Lo (r, @, BFFL 8wk ok, pk)}
Step 1c. Compute

(W ) & ming g { Lo (! w, 8,68 ub; ok, pb) |

Note: the subproblems need not be solved exactly as long as
they satisfy some prescribed accuracy.
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An inexact sGS-ADMM for solving (21)

Step 2. Compute

k+1 #k+1 . k+1 k+1 Qk+1 k  k
(u+7§+):mmu,£Lo’(T+aw+75+7€7u;a 7:0)

SEHL g* if g5 <1, gF = wht! — o= 1D1pk
g"/|lg*|| otherwise

gl Tz, (Tk—i—l _ ZTu gkl 4 g1k 0—1ce>

Step 3. Compute

ak+1 — Oék _ TO_(Zka-i-l + yﬁk-l-l + £k+1 _ ,rk—l-l)
pk+1 pk _ TO_D(,wk—i-l _ uk—i—l)7

where 7 € (0, (1 + 1/5)/2) is the steplength which is typically
chosen to be 1.618.



Convergence result for inexact sGS-ADMM

Theorem 25 (Chen-Sun-Toh, 2015)

Suppose (21) has at least one solution. Let

{(r*, wk, B* &F uk; ok, pF)} be the sequence generated by the
inexact sGS-ADMM in Algorithm 1. Then {(r*, w*, p*, &F u*)}
converges to an optimal solution of (21) and {(a*, p*)} converges
to an optimal solution of its dual.
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Numerical experiments: Comparison between solvers

exponent ¢ = 2 sGS-ADMM directADMM IPM
Data n d || Time (s)|lter|Err (%)||Time (s)| Iter | Err || Time (s)|lter| Err
covtype |581012| 54 74.69 |368| 23.74 || 336.85 |2343|23.74 - - -

gisette | 6000 | 5000 48.04 |312| 0.00 || 273.49 |5000| 1.07 || 2508.89 | 55 | 0.00
ijjcnnl | 35000 22 295 [233] 7.94 8.28 |1004| 7.88 || 2002.77 | 38 | 7.98
mush. | 8124 112 1.40 |301| 0.00 16.33 |5000( 0.10 || 650.16 | 52| 0.00
real-sim | 72309 | 20958 || 29.25 [174| 1.51 19.26 | 181|151 - - -
w8a | 49749 | 300 8.41 |543| 1.13 52.77 |5000] 2.66 - - -
rcvl | 20242 | 47236 || 20.61 [121| 0.83 25.44 | 267 | 0.78 || 7547.28 | 43| 0.79
prostate | 102 6033 0.11 |41 0.00 0.41 |301|0.00| 8.78 |28|0.00*
farm-ads| 4143 | 54877 560 (80| 0.41 5.36 |113|0.41 || 383.43 | 41|0.41*
dorothea| 800 |100000| 6.41 |253| 0.00 80.14 |5000( 0.00 || 25.89 |35]0.00
url-svm 2560003231961 1198.81 |384| 0.50 || 1406.38 | 770 | 0.50 - - -

o Interior point method is always the slowest
e In terms of iterations, our inexact sGS-ADMM has the best performance
e For 7 data sets, the number of iterations required by the directly extended ADMM hits
the maximum allowed, probably implying nonconvergence of the method.
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Semismooth Newton based augmented Lagrangian method
(SNAL) with applications to big sparse optimization



Representative References
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mooth Newton-CG augmented Lagrangian method for semidefinite
programming with nonnegative constraints, MPC, 2015

[X.D. Li, D.F. Sun, and K.C. Toh] QSDPNAL: A two-phase proxi-
mal augmented Lagrangian method for convex quadratic semidefinite
programming, submitted, 2015
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mented Lagrangian method for high dimensional convex quadratic
and linear programming problems, technical report, 2016
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semismooth Netwon-CG augmented Lagrangian method for Lasso
problems, submitted, 2016

[X.D. Li, D.F. Sun, and K.C. Toh] A semismooth Netwon augmented

Lagrangian method for fused Lasso problems, technical report, 2016
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Let X, ) be real finite dim. real inner product spaces. Consider

(P) min {f(m) = h(Az) + G(x)}

A: X — Y is a linear map
h:Y — (00, 00], convex differentiable
0:X — (—o0, ], cpc fun.

The dual (ignoring the minus sign) is

D i h*(€) + 0% (u) | A* —0
(D) geg}glex{ )+ 0" (u) | A +u=0}

The KKT conditions are:

A +u=0, uwedb(r), &€ oh(Ax)
& A¢C+u=0, z=Py(zr+u), &=Vh(Ax)
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Examples in machine learning

Examples of smooth loss function h:

@ Linear regression: ||y — b2
o Logistic regression: log(1 + exp(—y’b))
e Support vector machine (SVM dual): 3||y||?

Examples of regularizer 0:

e Lasso: [|z|1

o Fused Lasso: [|z[1 +AY27 ] |2 — Tit1]

o Clustered Lasso: |lz|l; +AY 1, Z;;ll |z — 2]

e Ridge: ||z||3

o Elastic net: ||z|; + A\||=||3

e Group Lasso: Zf\il lzg, |2

o Fused Group Lasso:

e SVM: —(x, 1) + dp(x) where B={z | (b, z) = 0,0 < z < p}.
@ etc
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Example: Sparse regression

Sparse regression:

# of features n > # of samples m

searching for a sparse solution
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Example: Support vector machine

/ V 4 /
Residuals, r / /
/4
Support Vectors , Y
/
V4 /

Class -1

Class +1

Normal Vector

’ a2 ’
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Assumptions on h and its properties
1. h: Y — R has a 1/ay-Lipschitz continuous gradient:

IVh(y1) = VA(g2) | < (1 an)llyr — g2l Vo1, 92 € Y

2. h is essentially locally strongly convex [Goebel & Rockafellar,
2008]: for any compact convex set K C domdf, Jox > 0 s.t.
forall a, 8 € [0,1], a+ =1, y1,y2 € K:

OK 2
ah(y1) + Bh(yz) = h(ayy + By2) + —-abllys — 2

Under the above assumptions on h, we have

[«9)

. h*: strongly convex with const. «j and Dy« := int (dom h*) # ()
. Oh*(y) = 0 when y & Dps«
c. h*: essentially smooth (diff. on Dy« and |[VA*(y;)|| T oo whenever
{yi} C Du+ — y € bdry(Dy-))
d. Vh*: locally Lipschitz continuous on D«
Only need to focus on D!

o
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Proximal-point algorithm for (P)

Given o > 0, the Moreau-Yosida regularization of f is given by
Fo(3) o= min { f(2) + ol — 7}
o(Z) := min T oy r—2

Denote the unique minimizer by P,(Z). F, is differentiable and

VFs(1) = ~(r—Polx))

o
IPo(z) = Po(a)]| < fo—2'| Va2
min f(z) < minF,(z)
Clearly min f < minF,. Conversely, minF, < F,(z) < f(Z) for all
Z = minF, < min f.

PPA is a gradient method to solve min F,(z):

"~ 2k — 0 VF,, (2F) = P, (2F).




Proximal-point algorithm for (P)

To compute P, (z*), we solve

F,(2*) = min {f(a:) + %Hx — :z;k||2}

= i|$k2min{ h*(ﬁ)—i—%”mk—aA*{HZ } ( by strong)
3

_%Mae(gck — 0 A*¢) duality

1 .
= o[22 | ming {1*(©) + oM. o (01 — 4°6) }

for dual solution £¥. Then set P, (z*) = Pyg(2* — o A*€F).

Optimality condition is

0 € Oh*(€) — APg(z* — 0 A%E).
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An augmented Lagrangian method for (D)

The Lagrangian function for (D):

1§ uyz) = h*(§) + 0" (u) — (z, AE+u), V(§u,z) € Yx XXX

Given o > 0, the augmented Lagrangian function for (D):
Lo (& i) = 1€ w;2) + T A" + ]
The proximal mapping Py(z):
Po(x) = axgmin {0(x) + 2 lu —
6(z) = argmin ( 6(z) + S flu — = }

Given C C X, let dist(z, C) := infcc || — 2'|| for any z € X.



An augmented Lagrangian method of multipliers for (D)

An inexact augmented Lagrangian method of multipliers.

Given Y e < 00, g > 0, choose (£2,u°, 2°) € Dy« x domp* x X.
Iterate

1. Compute
(T uM ) & argmin{L"(&,u) = Lo, (&, u;2M) ]

2. Compute zF+1 = 2k — gy (AP 1 oh ),
update op41 T 000 < 00 .
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Global convergence

The stopping criterion for inner subproblem

(A) dist(0,0LF (R wb Y)Y < g/ max(1, \/op/ap)

Theorem 26 (Global convergence)

Suppose that the solution set to (P) is nonempty. Then {z*} is
bounded and converges to an optimal sol. of (P). In addition,
{(€*,u*)} is also bounded and converges to the unique optimal sol.
(&*,u*) € Dp» x dom(p*) of (D).



Fast linear local convergence

Assumption 27 (Error bound)

For a maximal monotone operator T : X = Y with T—1(0) # 0),
Je>0anda >0 s.t.

dist(§, 771(0)) < alln| YneB. and VEET '(n)

where B. = {y € Y | ||y|| < e}. The constant a is called the error
bound modulus associated with T .

It holds for the following cases:
@ 7 is a polyhedral multifunction [Robinson, 1981].
@ 7; and Ty of LASSO, fused LASSO and elastic net regularized
LS problems (piecewise quadratic problems [J. Sun, 1986]).

© T of 41 or elastic net regularized logistic regression [Luo and
Tseng, 1992; Tseng and Yun, 2009].
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Fast linear local convergence

Stopping criterion for the local convergence analysis

(B) dist(0, OLF (ML, uF )

O .
————mi 1, +1 _ K 00 5 o
maX(l,O'k/ah) Hlln{ ||l’ x ||}7 Zkfo k o0

Theorem 28

Assume that the solution set ) to (P) is nonempty and error bound
assumption holds for T; with modulus a¢. Then, {z*} is convergent
and, for all k sufficiently large,

dist(z*+1, Q) < Gpdist(z*, Q)
where ek = ((CL?_&W +2(5k)/(1 —5k) = 000 = (a—fl/2 < 1.

a%+oZ,)

Moreover, the conclusions of Theorem 26 about {(¢*,y*)} are valid.
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Semismooth Newton method for inner problems

rgin{ﬁ’“(@u) = Lo (¢ uab)} = min (¢)

V(€)= nf{Ly (& u,2")} = |h*(€) + oMge /o (0™ a" — A%€)

which is exactly the dual of the PPA subproblem.

¥ (+): strongly convex and continuously differentiable on Dy« with
V() = VH () — APsg(a" — 0 A*€) V& € Do
Solving nonsmooth equation:

Vip(§) =0 & € Dy
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Semismooth Newton method for inner problems

Lipschitz continuous mapping: Vh*, Pyg(-)
Denote for £ € Dys:

(&) 1= O*h* (&) + 0 ADPy(zF — o A*) A*

0?h* (&) = Clarke subdifferential of VA* at ¢

OPyg(z* — o A*¢) = “Jacobian” of P(-)
Define
V0= H+ 0 AU A*

with HO € 92h*(¢), UY € P yo(zF — 0. A*E).
VO € 0%p(¢) and VO = 0
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Semismooth Newton method for inner problems

Semismooth Newton method.
Given 7 € (0,1), 7 € (0,1], and § € (0,1). Choose £ € Dy-. Iterate

1. Choose V; € 521/1(§j). Find an approx. sol. d/ € Y to
Vi(d) = —Vy(¢)
st [[Vi(@) + V()] < min(7, [V (&7)[IMT).

2. (Line search) Fix ¢ € (0,1/2). Find the first nonnegative integer
m s.t. & +6md’ € D+ and

Y(E + ") <€) + (VY (), &)

3. Set 9l =¢i 4 5mdl,
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Semismooth Newton method for inner problems

Theorem 29

Assume that Vh*(-) and Prox,,(-) are strongly semismooth on Dj»
and X. Then {€7} converges to the unique optimal solution
& € Dy and

lE = €]l = Oo(llg” - &lI™*T).

Implementable stopping criteria: the stopping criteria (A) and (B) =

€k

/ k+1
(W) 190l < e
O,

, k41 _—
(B |IVr(€ )||§max(1,ak/ah)

min{1, og[|A"EM 4w}



An APG for (P) (for comparison)
An APG for (P).

Given 20 € domp, let y! = 2% and t; = 1. lterate
p Yy

1. Compute
= argumin 9(:% + h(Ay") + (A*Vh(AYY), = — ")
= PR
2. Compute tp11 = ﬂ

tp — 1 _
yk-‘rl — ok + k (.’L’k _ ok 1)'
Tyt

Recall h has a 1/aj-Lipschitz continuous gradient:

L = Anax (A" A)/aup,
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An (linearized) ADMM for (D) (for comparison)

An (linearized) ADMM for (D).
Given (£%,u%,20) € Dps xdomp* x X, 0 >0, 7 € (0, (1++5)/2).

Iterate
1. Compute
‘ o
¢l = argmin {Cg(tf, uks ) + 5”5 - ka%’}
uktl = argmin{ﬁa(fkﬂ,u;ﬂ?k)}

2. Compute zF+! = 2F — 7o (A*EFHT 4 F1).

Classical ADMM: T =0
Linearized ADMM: T = A\pax(AA*)T — AA*



mfIPM for LASSO (for comparison)

Specialized matrix free interior point method (mfIPM) [Fountoulakis
et al. 2014] for lasso
z* = argmin || Az — b[|> + A [|z[|1, reformulated as:

1
z* = arg min {)\1<12n, z) + §||]:*z —b)? | 2> O}

2 =[u0t]), Fr=[A -A, 2f=u" -0

Linear system to solve:

FF* —TIo, dS '\ [ rhs;
s  Zz dz )\ rhsy
Using Schur complement formula to get 2n x 2n system

(Z71S + FF*)dZ = rhsy + Z 'rhsy

mfIPM: solve the above system by PCG with specialized precondi-

tioner for lasso problems!
124



LASSO: min {3||Az — b||> + M|z}
h(y) = 3lly — bl* and O(x) = A ||z[x
Proximal mapping of §: easy to compute (soft thresholding)

Newton System:
(I, + 0 APA™)dE = rhs

Pe 5Pl,9(:1:]C — o A*¢): a diagonal matrix with 0,1 entries!
. 0 if |(xzF — A*E);| < o\
"1 1 otherwise

Using sparsity to solve the system efficiently!



Efficient implementation

Exploit the second order sparsity:

n
"I
AA* =
O(m?n * sparsity)

p
(AP)(AP)* :ml:| D = - O(m?p = sparsity)

If p < m, use Sherman-Morrison-Woodbury formula to invert:
(I, +UU ' =1, - U, +U*U)"'U*
Need only to invert smaller p x p matrix: (I, + o(AP)*(AP))
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SSNAL for fused lasso and efficient implementation

Fused lasso: min{3|| Az — b||? + \i[[z([1 + A2 Bz|+}

1 -1
h(y) = 5lly = bl* and 0(2) = Atz + A2 Bz

For details: attend the talk of Xudong Li on Thursday
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Numerical resulsts for LASSO

KKT residual:

_ 12 = Pyp(z — (AZ - b))|

NKKT ‘= - _ <1076,
L+ ||Z] + || AZ — b

Compare SSNAL with state-of-the-art solvers: mfIPM and FPC_AS
(A, b) taken from 11 Sparco collection [Van Den Berg, 2009]

A = A||A*D|| oo with A\, = 1072 and 1074
Add 60dB noise to b in MATLAB: b = awgn(b,60, *measured’)

max. iteration number: 20000 for FPC_AS
max. computation time: 7 hours
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(a) our SsNAL (b) mflPM
(c) FPC_AS: 1st order method based on FB splitting

Numerical results for LASSO arising from compressed sensing

Ae =1073
NKKT time (hh:mm:ss)
probname m;n alb|c alb|c
p3poly 600;2048 | 2.3-7 | 9.5-7 | 9.2-7 48| 1:09 | 29
blknheavi  1024;1024 | 6.3-7 | 9.2-7 | 1.3-1 010155
srcsepl 29166;57344 | 9.5-7 | 7.3-7 | 9.7-7 7:20 | 42:34 | 13:25
soccerl 3200;4096 2.6-9|6.3-7|5.2-1 02 ] 03| 13:51
blurrycam  65536;65536 | 8.2-7 | 6.5-7 | 3.6-8 02|09 |03
blurspike ~ 16384;16384 | 2.3-7 | 9.5-7 | 7.4-4 05| 05 | 6:38
Ae = 1074
p3poly 600;2048 | 2.5-7 | 8.3-7 | 1.1-2 | 2:04 | 2:13 | 42:52
blknheavi 1024;1024 1.9-7 | 8.7-7 | 4.6-3 01|01 |49
srcsepl 29166;57344 | 3.0-7 | 9.5-7 | 9.9-7 | 17:23 | 3:31:08 | 32:28
soccerl 3200;4096 5.1-8 | 4.3-7| 5.2-1 02 ] 02| 13:23
blurrycam  65536;65536 | 7.9-7 | 9.7-7 | 1.3-7 05| 1:35 | 08
blurspike 16384;16384 | 3.4-7 | 7.4-7 | 8.3-5 11 | 08 | 6:43

120



Numerical results for LASSO arising from sparse regression

11 large scale instances (\A, b) from LIBSVM [Chang and Lin, 2011]

For the data pyrim, triazines, ... ,housing, mpg, we expand their
original features by using polynomial basis functions [Huang et al.,
2010]. The last digit in pyrim5 means order 5 polynomial is used

Ae =103
KKT time (hh:mm:ss)
probname m;n alb|c alb]c

E2006.train 16087; 150360 1.7-11 | 3.9-7 | 9.0-4 01|11 | 1:34:40
loglp.E2006.train  16087; 4272227| 1.8-7 | 4.7-8 | 4.7-1 26 | 41:01 | 7:00:20

E2006.test 3308; 150358 | 6.0-7 | 2.9-7 | 3.7-4 00 | 05 | 33:30
loglp.E2006.test 3308; 4272226| 5.6-7 | 1.5-8 | 9.8-1 22 | 37:24 | 7:00:01
pyrim5 74; 201376 5.3-7 | 3.2-7 | 8.8-1 05 | 21:27 | 2:01:23
triazines4 186; 635376 | 3.3-7 | 8.8-1|9.1-1 | 28 |53:30 | 7:30:17

abalone7 4177; 6435 8.7-7 | 3.5-7 | Error 02 | 49 | Error
housing7 506; 77520 | 2.8-7 | 8.1-1 | 8.4-1 | 04 | 5:13:19 | 1:41:01

mpg7 392; 3432 6.3-9 | 6.5-7 | Error 00 | 04 | Error

2nd order method is important for designing robust solvers!
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Numerical results for fused LASSO

(a) our SSNAL

(b) state-of-the-art: APG based solver, SLEP [Liu et al 2009]
(c1) ADMM (classical) (c2) ADMM (linearized)

Parameters: A1 = Ac|[A*Ylloo, A2 = 2A1, tol = 1074
Problem: triazines 4, m = 186, n = 635376

iter time (hh:mm:ss)
Ae | nnz | ne alblcl|c2 a|b|cl|c2
1071 ; 164; 2.4-2 10 | 6448 | 3461 | 8637 18 | 26:44 | 28:42 | 46:35
102 ; 1004; 1.7-2 13| 11820 | 3841 | 19596 22 | 48:51 | 24:41 | 1:22:11

10-3 ; 1500; 1.2-3 | 16 | 20000 | 4532 | 20000 31| 1:16:11 | 38:23 | 1:29:48
10-4;2205; 2.6-4 | 21 | 20000 | 6353 | 20000 48 | 1:14:57 | 53:58 | 1:27:11
10—5 ; 2420; 6.4-5 | 24 | 20000 | 14384 | 20000 | 1:01 | 1:26:39 | 1:49:44 | 1:35:36

SSNAL is vastly superior to first-order methods: APG, ADMM (classical),
ADMM (linearized)

ADMM (linearized) needs many more iterations than ADMM (classical)
As problems get more complex, 2nd order method is even more im-
portant!



SSNAL for solving SDP

(SDP) min{<c,x>|AX—b:o,Xesi}
(SDD) max{—p*(—S)-l—(lL Y| Ay + S —C =0, 5eRm}

where p(X) = dgn (X). Let X be the multiplier associated with
the dual equality at the kth iteration. Let GF = C — o1 X*. The
augmented Lagrangian subproblem for (SDD) is

. %0 g *, k)2
rglyn{p( S)+2||S+Ay G|l (bay>}

_ . _ . LY g *, k2
= min{ — (b, y) +min {p"(=) + TS + Ay - G**} }

~ min {@k(y) = (b, y) + oMy, (A*y — Gk)}

VOk(y) = —b+0AVMy -1, (A'y — GF) = b+ AP, (0 A"y — 0GF)
—b+ Allgn (0 A"y — aG*)
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A semismooth Newton-CG method for the subproblem

Solve VO*(y) = b — Allg: (U) =0, U =0cA*y—oGF.

V&*(y) is not differentiable, but is strongly semismooth [Sun-Sun].
At the current iteration, y;, we solve a generalized Newton equation:

HAy =~ V- (y), where HAy = 0 All, (U)[A*Ay]  (22)

From eigenvalue decomp: U = QDQT with d; > --- > d, >0 >
dry1 > -+ > dp, we choose

g (U)[M] = Q(20 (QTMQ))Q", (23)

where Q;; = (df — dj)/(di —d;). For v = {1,...,r} and 7 =
{r+1,...,n}, we have

E’Y’Y 97’7
Q5 0

Q:

The structure in Q allows for efficient computation of rhs of (23),
and hence matrix-vector multiply for CG in solving (22)



SDPNAL-: a solver for SDP-+

(SDP+) min {(C, X) | A(X) =b, L <B(X) <u, X €S}, X € P}
where P = {X € S" | L < X < U} imposes bounds on X.

(D) mindp(—2) +65(—v) + (b, y)

st. A*(y)+B*(v)+S+Z2=C, SeSt
where Q = {s e RP | | < s < u}.

While the problem (SDP+) has only a single block X, our solver can
solve the following more general problem with N blocks of variables:

min Z {CW) X))
st 2 ADXO) =b, 1<, BOXD) <u
XD e, xWepl j=1,... N
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Robustness of SDPNAL--

For the class where P = {X > 0}, B =0 (no linear inequalities)

Rp, Rp, Ry (X), Rp(X), Rey (), Bp(2), .
Tkt *= Max <107°.
R((X, S)), R((X, Z))

We compare the performance of our SDPNAL+ and ADMM+ with
the direct ADMM implemented in SDPAD [Wen et al.] and 2EBD-
HPE [Monteiro et al.]

Numbers of problems which are solved to the accuracy nxkr < 106

problem set (No.) | SDPNAL+ | ADMM+ | SDPAD | 2EBD
0 (58) 58 56 53 53

0., (58) 58 58 58 56
FAP (7) 7 7 7 7
QAP (95) 9 39 30 16
BIQ (134) 134 134 134 134
RCP (120) 120 120 114 109
R1TA (55) 55 42 47 18
Total (527) 527 456 413 | 393




Performance profile on 527 large SDPs

Performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD

Performance Profile (58 6,58 6, 7 FAP, 95 QAP, 134 BIQ, 120 RCP, 55 R1TA problems) tol = 1e-06
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Implemented the algorithms in MATLAB.
Runs perform on a 6 cores Linux Server with 12 Intel Xeon processors
at 2.67 GHz and 32G RAM.

Stop SDPAD and 2EBD after 25000 iterations or 99 hours.

Numerical results for SDPNAL-+

Prob m;n n time (hour:minute)
SDPAD|2EDB|SDPNAL+
1dc.2048 | 58368; 2048 | 9.9-7/9.9-7| 9.9-7|  14:00| 16:04| 5:50
fap36 4110+N; 4110 | 9.9-7| 9.9-7| 9.5-7| 78:43| 43:37| 23:07|
nug30 | 1393+A/; 900 1.1-5] 1.7-5] 9.6-7 4:58| 5:39| 0:45
tai30a | 1393+A/; 900 | 4.6-6] 1.3-5/ 9.9-7 6:09| 6:00| 0:29

nonsym(6,5)

194480; 1296

9.9-7/ 1.6-3| 5.2-7

2:59| 11:24| 0:05

nsym_rd[40,40,40]

672399; 1600

3.7-4|5.1-4/ 8.6-7

13:56| 22:41| 0:14

nonsym(12,4)

12.32M; 9261

9.8-3 5.2-3/ 5.7-8

99:00| 99:00| 14:22

Results show that it is essential to use second-order information to
solve hard problems!



Summary for SDPNAL+

@ We have tested SDPNAL+ on about 520 SDPs from 6,6, QAP,
binary QP, rank-1 tensor approximation, etc

@ When the problems are primal-dual nondegenerate, SDPNAL+
can efficiently solve large SDPs to high accuracy. SDPAD and
2EDB also performed well, though SDPNAL—+ is often more ef-
ficient.

@ Many of the tested SDPs are degenerate, but SDPNAL+ can
still solve them accurately with n < 1076, Other hand, SDPAD
and 2EDB were not able to solve many such problems.
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Thank you for your attention!
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