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Algorithmic and geometric aspects of 
combinatorial and continuous optimization 



linear optimization 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 
 
“Can linear optimization be solved in strongly polynomial time?”  
is listed by Smale (Fields Medal 1966) as one of the top problems for 
the XXI century 
 
Polynomial : execution time bounded by a polynomial in n, d, and 
input data length L  



linear optimization 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 
 
“Can linear optimization be solved in strongly polynomial time?”  
is listed by Smale (Fields Medal 1966) as one of the top problems for 
the XXI century 
 
Strongly polynomial : polynomial time; number of arithmetic 
operations bounded by a polynomial in the dimension of the problem 
(independent from the input data length L) 



linear optimization algorithms 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Simplex methods (Dantzig 1947) pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ellipsoid methods (Khachiyan 1979)  
polynomial ⇒ linear optimization is polynomial time solvable  
 
Interior point methods (Karmarkar 1984) 
path-following, polynomial, efficient in practice  
 
Primal-dual interior point (Kojima-Mizuno-Yoshise 1989) 
 
Criss-cross (Terlaky 1983, Wang 1985, Chang 1979) 
Volumetric (Vaidya-Atkinson 1993, Anstreicher 1997) 
Monotonic build-up simplex (Anstreicher-Terlaky 1994) 
….. 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Simplex methods (Dantzig 1947): pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ø  start from a feasible basis 
Ø  use a pivot rule 
Ø  find an optimal solution after a finite number of iterations 
Ø  most known pivot rules are known to be exponential  
     (worst case); efficient implementations exist 
 
 

linear optimization algorithms  
simplex methods 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b : x ≥ 0 } 
 
Simplex methods (Dantzig 1947): pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ø  start from a feasible basis 
Ø  use a pivot rule 
Ø  find an optimal solution after a finite number of iterations 
Ø  most known pivot rules are known to be exponential  
     (worst case)  nevertheless efficient  
      implementations exist 
 
 

linear optimization algorithms  
simplex methods 



Klee-Minty 1972: edge-path followed by the simplex method with 
Dantzig’s rule visits the 2d vertices of a combinatorial cube (n = 2d)  
⇒ 2d - 1 pivots required to reach the optimum 
  
Zadeh 1973 : bad network problems  
 
Zadeh 1980 : deformed products and least entered rule 
 
Amenta-Ziegler 1999 : deformed products  
 
Friedmann 2011 : least entered rule is superpolynomial 
 
Surveys : Terlaky-Zhang 1993, Ziegler 2004, Meunier 2013 
 
 
… Avis-Friedmann 2016…  
 

linear optimization algorithms  
simplex methods 



Linear Optimization? 

Zadeh’s offer (Ziegler 2004)  
(Avis’ postface to Zadeh 1980 report, 2009 reprint) 



David Avis, Norman Zadeh, Oliver Friedmann, Russ Caflish (IPAM 2011) 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Interior Point Methods : 
path-following, polynomial, efficient in practice  
 
Ø  start from the analytic center 
Ø   follow the central path 
Ø   converge to an optimal solution in O(√nL) iterations 
      (L:  input data length) 
 
 

_ 

µmin cΤx − ln(b− Ax)i
i
∑

µ : central path parameter 
x ∈P : Ax ≤ b 

analytic  
center 

central 
path optimal 

solution 

c 

linear optimization algorithms  
(central path following) interior point methods 



Tardos 1985: algorithm polynomial in n, d, and LA (size of A) 
⇒ strongly polynomial for minimum cost flow, bipartite matching etc. 
… Orlin 1986, Kitahara-Mizuno 2011, Mizuno 2014, Mizuno-Sukegawa-
Deza 2015... 
 
Ye 2011 : strongly polynomial simplex for Markov Decision Problem 
 
Vavasis-Ye 1996 : O(d 3.5 log(d χA)) primal-dual interior point method  
…Megiddo-Mizuno-Tsuchiya 1998, Monteiro-Tsuchiya 2003… 
 
Bonifas-Summa-Eisenbrand-Hähnle-Niemeier 2014: O(d4ΔA

2log(d ΔA)) 
diameter         (ΔA  largest sub-determinant norm; Dyer-Frieze 1994) 
 
Dadush-Hähnle 2015: O(d 3/δA log(d/δA)) expected (shadow vertex) 
simplex pivots  (δA  curvature ; 1/δA

 ≤ d ΔA
2 ) 

 
…. 

linear optimization  
(some) combinatorial and geometric parameters  



Diameter (of a polytope) :  

lower bound for the number of iterations for pivoting 
simplex methods 

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iterations 
for path following interior point methods 

linear optimization diameter and curvature  

analytic  
center 

central 
path optimal 

solution 

c 



Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

v  polytope : bounded polyhedron 

linear optimization : diameter and curvature  



Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



P 

Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



vertex v1 

vertex v2 

Diameter δ(P): smallest number such that any two vertices (v1,v2)  
can be connected by a path with at most δ(P) edges 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



Diameter δ(P): smallest number such that any two vertices  
can be connected by a path with at most δ(P) edges 
 

Hirsch Conjecture 1957 :  δ(P) ≤ n - d 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



Diameter δ(P): smallest number such that any two vertices  
can be connected by a path with at most δ(P) edges 
 

Hirsch Conjecture 1957 :  δ(P) ≤ n - d 
 

Ø  disproved by Santos 2012 using construction with n = 2d 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  λc(P): redundant inequalities count 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  Dedieu-Shub 2005 hypothesis : λ(P) = O(d) 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  Dedieu-Shub 2005 hypothesis : λ(P) = O(d) 
v  Deza-Terlaky-Zinchenko 2008 : polytope such that: λ(P) = Ω(2d) 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 
 
Ø  disproved by Allamigeon-Benchimol-Gaubert-Joswig 2014 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



Dedieu-Shub 2005 hypothesised λ(P) = O(d) 
 Dedieu-Malajovich-Shub 2005 proved it is true on average 
 (de Loera-Sturmfels-Vinzant 2012) 

 
Deza-Terlaky-Zinchenko 2008: P with exponential λ(P) and n = Ω(2d) 
 
Continuous analogue of Hirsch Conjecture: λ(P) = O(poly(n,d)) 
 
Allamigeon-Benchimol-Gaubert-Joswig 2014 : linear optimization instance 
(2n ≈ 3d) for which central-path following methods require Ω(2d/2) iterations  
 
⇒ path-following interior-point methods are not strongly polynomial  
 
Result obtained using tropical geometry, which reduces the complexity 
analysis to a combinatorial problem 

linear optimization : diameter and curvature  



Arrangement A defined by n hyperplanes in dimension d 

   n = 5 : hyperplanes 
   d = 2 : dimension 

linear optimization : diameter and curvature  



Simple arrangement:  
n > d and any d hyperplanes intersect at a unique distinct point 

   n = 5 : hyperplanes 
   d = 2 : dimension 

linear optimization : diameter and curvature  



For a simple arrangement, the number of bounded cells I = 
 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

P1 

P2 

P3 

P4 

P6 P5 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi of A: 
 
 
λc(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pλ
=

=
∑
I

c

I
1−⎛ ⎞

⎜ ⎟
⎝ ⎠

n
d

c 

P1 

P3 

P2 

P6 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  λc(Pi): redundant inequalities count 

P5 

P4 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi  of A: 
 
 λ(A) : largest value of λc(A) over all possible c 

P1 

P3 

P2 

P6 

c 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

P5 

P4 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi  of A: 
 
 λ(A) : largest value of λc(A) over all possible c 
 
Dedieu-Malajovich-Shub 2005:         λ(A) ≤ 2   d 
 
(de Loera-Sturmfels-Vinzant 2012) 

P1 

P3 

P2 

P6 

c 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

π

P5 

P4 

v  A : simple arrangement 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 

P1 

P3 

P2 

P6 

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  A : simple arrangement 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 
 
 
δ(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pδ
=

=
∑
I

I

P1 

P3 

P2 

P6 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  δ(A): average diameter ≠ diameter of A  
     ex: δ(A)= 1.333… 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 
 
 
δ(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pδ
=

=
∑
I

I

P1 

P3 

P2 

P6 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  δ(Pi): only active inequalities count 

linear optimization : diameter and curvature  



P1 

P3 

P2 

P6 

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

δ(A) : average diameter of a bounded cell of A: 
 

Conjecture :  δ(A) ≤ d 
(Deza-Terlaky-Zinchenko 2008)  

    
(discrete analogue of Dedieu-Malajovich-Shub result) 

linear optimization : diameter and curvature  



 Terlaky-Mut 2014 : Sonnevend curvature  

δ(P) ≤ n – d ? Hirsch conjecture (1957) 
                                               Santos 2012 

δ(A) ≤ d ?   Deza-Terlaky-Zinchenko 2008 λ(A) ≤ 2   d     Dedieu-Malajovich-Shub 2005  

λ(P) ≤ 2   n  Poly(n,d)? Deza-Terlaky-Zinchenko 2008 
                 Allamigeon-Benchimol-Gaubert-Joswig 2014 

π

π

linear optimization : diameter and curvature  



Hirsch bound  δ(P) ≤ n - d implies   δ(A) ≤ d   

Hirsch conjecture holds for d = 2 :   δ(A) ≤ 2  

Hirsch conjecture holds for d = 3 :   δ(A) ≤ 3 
 
Larman 1970, Barnette 1974  δ(P) ≤ 
(Labbé-Manneville-Santos 2015) 

Kalai-Kleitman 1992    δ(P) ≤   

Todd 2014     δ(P) ≤ 

Sukegawa-Kitahara 2015  δ(P) ≤  
 
Sukegawa 2016, Mizuno-Sukegawa 2016 
Borgwardt-de Loera-Finhold 2016 (Hirsch holds for transportation polytopes)  
….. 

1
1

+

−

n
n

1
1

+

−

n
n

1
1

+

−

n
n

log( )− dn d

log 2+dn

n2d /12

(n−d )log(d−1)

linear optimization : diameter and curvature  



  
dimension 2                δ(A) =                      
 
dimension 3                    δ(A) asympotically equal to 3                                                                      
                                                                                          
dimension d               d                  ≤  δ(A)  
 
                                                                      Deza-Xie 2009 

- -1⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

/n d n
d d

v  Haimovich’s probabilistic analysis of shadow-vertex simplex method, Borgwardt 1987 
v  Forge-Ramírez Alfonsín 2001: counting k-face cells of A*  

2 / 2
( 1)( 2)

⎡ ⎤⎢ ⎥
− −

n
n n

  
A*  cyclic arrangement (mainly consists of cubical cells) 

linear optimization : diameter and curvature  



Diameter (of a polytope) :  

lower bound for the number of iterations   
for the simplex method (pivoting methods) 
 
lower bound : (1+ ε) (n – d)    upper bound:   

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iteration 
for central path following interior point methods  
 
lower bound : Ω(2d/2)  with 2n ≈ 3d     upper bound:   
 

Allamigeon-Benchimol-Gaubert-Joswig 2014 exponential lower bound 
for λ(P) contrasts with the belief that a polynomial upper bound for 
δ(P) might exist, e.g. δ(P)  ≤ d (n – d)/2 

log( )− dn d

1
2π

−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

d

linear optimization : diameter and curvature  



Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  

Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 [6,7] 7+ 

5 4 5 6 [7,9] 7+ 

6 4 5 [6,7] [7,9] 8+ 

7 4 5 [6,7] [7,10] 8+ 

Δ(4,10) = 5, Δ(5,11) = 6  Goodey 1972 

linear optimization : diameter and curvature  



Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 6 7+ 

5 4 5 6 [7,8] 7+ 

6 4 5 6 [7,9] 8+ 

7 4 5 6 [7,10] 8+ 

Δ(4,11) = Δ (6,12) = 6  Bremner-Schewe 2011 

linear optimization : diameter and curvature  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  



Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 6 7 

5 4 5 6 7 [7,9] 

6 4 5 6 [7,8] [8,11] 

7 4 5 6 [7,9] [8,12] 

Δ(4,12) = Δ (5,12) = 7   Bremner-Deza-Hua-Schewe 2013 

linear optimization : diameter and curvature  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  



Characterize all combinatorial types of paths of length l 
 
Find necessary conditions for a (chirotope of a) polytope to admit  
an embedding of a l-path on its boundary (without shortcuts) 
 
If no such (chirotope of a) polytope exists:  Δ (d, n) ≠ l  

linear optimization : diameter and curvature  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  
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lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by the truncated cube 

 



lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by the truncated cube 

 

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
 

 δ(d,1) = d     [Naddef 1989] 
 

 δ(2,k) = O(k2/3)     [Balog-Bárány 1991] 
 

 ⇒ δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 

 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 
 

 δ(2,k) = 6(k/2π)2/3 +O(k1/3 log k)   [Thiele 1991]  
      [Acketa-Žunić 1995] 

 
 δ(d,2) =  3d/2     [Del Pia-Michini 2016] 

 
 δ(d,k) ≤ kd -  d/2     for k ≥ 2  [Del Pia-Michini 2016] 

 

lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 ? ? ? ? ? ? 

4 4 6 ? ? ? ? ? ? ? 

5 5 7 ? ? ? ? ? ? ? 

δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 

lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7+ 9+ ? ? ? ? 

4 4 6 8+ 10+ ? ? 16+ ? ? 

5 5 7 10+ ? 15+ ? ? ? 25+ 

δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 
δ(d,k) ≥ (k+1)d/2    [Deza-Manoussakis-Onn 2016] 
for many d and k     

lattice polytopes with large diameter  



convex matroid optimization 

Motivation : convex matroid optimization [Melamed-Onn 2014] 
 
The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of 
the projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (in the talk W is mostly {0,1}-valued) 
f : convex function from Rd to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) 
when S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
Obviously  v(d,n) ≤ |WS| = O(nd) 
In particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 
 



Motivation : convex matroid optimization [Melamed-Onn 2014]  
 
S : set of feasible point ∈ Zn  (in the talk S ∈ {0,1}n) 

W : integer d x n matrix   (in the talk W is mostly {0,1}-valued) 
f : convex function from Rd to R 
 
Assume S in {0,1} n is a matroid of order n; that is, the set of indicating 
vectors of bases of a matroid with ground set {1,…,n} 
 
Given a matroid S of order n, {0,1}-valued d x n matrix W, the maximum 
number m(d,1) of vertices of conv(WS) is independent of n and S 
 
Given a matroid S of order n, {0, ±1,…,±p}-valued d x n matrix W, the 
maximum number m(d,p) of vertices of conv(WS) is independent of n 
and S 

convex matroid optimization 



Motivation : convex matroid optimization [Melamed-Onn 2014]  
 
Given a matroid S of order n, {0,1}-valued d x n matrix W, the maximum 
number m(d,1) of vertices of conv(WS) is independent of n and S 
 
Example : the maximum number m(2,1) of vertices of a planar projection 
conv(WS) of matroid S by a binary matrix W is attained by the following 
matrix and uniform matroid of rank 3 and order 8: 
 
 

 W = 
 
 
 
S = U(3,8) = 

         
             
            conv(WS)  

2 3 0 1 

1 

2 

3 

convex matroid optimization 



given a set G of m vectors (generators) 
 
Zonotope Z(G) generated by G : convex hull of the 2m signed  sums of the 
m vectors in G 
 
Minkowski sum H(G) : convex hull of the 2m sums of the m vectors in G 
 
Primitive lattice polytopes: Minkowski sum generated by short integer 
vectors which are pairwise linearly independent  

 
Hq(d,p) : H(x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 

 
    Zq(d,p) : Z(x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 

 
            x ≻ 0 : first nonzero coordinate of x is nonnegative  

 
       up to translation Z(G) is the image of H(G) by an homothety of factor 2 

primitive lattice polytopes  



 
Hq(d,p) : H(x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 

 
    Hq(d,p)+ : H(x ∈ Zd

+ : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

    (H+ : positive primitive lattice polytope) 
 
Ø  Hq(d,1) : [0,1]d cube for finite q  
Ø  H1(3,2) : truncated cuboctahedron (great rhombicuboctahedron) 
Ø  H∞(3,1) : truncated small rhombicuboctahedron 
Ø  Z1(d,2) : permutahedron of type Bd 
Ø  Z1(d,2)+ : Minkowski sum of the permutahedron and [0,1]d   
 

  ⇒ Zq(d,p) is invariant under permutations and sign flips 

primitive lattice polytopes  
(generalization of the permutahedron of type Bd ) 



Q. What is δ(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid? 
 
A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors  
 
 
 
 
 
 
 
 
 
δ(2,3) = 4 is achieved by 8 vectors : (±1,0), (0,±1), (±1,±1) 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

||x||1 ≤ 1 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

||x||1 ≤ 2 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

||x||1 ≤ 3 

lattice polygons with large diameter  



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 
δ(2,17) = 12 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1), (±1,±3), (±3,±1) 

||x||1 ≤ 4 

lattice polygons with large diameter  



2 !(!)
!

!!!
!

 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2)  = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!

||x||1 ≤ p 

lattice polygons with large diameter  



 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2)  = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!2 !(!)

!

!!!
!

δ(2,k) 
                           k 

1 2 3 4 5 6 7 8 9 

p 1 2 3 

v 4 6 8 8 10 12 12 14 16 

δ 2 3 4 4 5 6 6 7 8 

lattice polygons with large diameter  



Hq(d,p) : Minkowski sum generated by {x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0} 
 
H1(2,p) has diameter δ(2,k) =    for k =   
 
 
Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1)  (fits, up to translation, in 3x3 grid) 
 

    x ≻ 0 : first nonzero coordinate of x is nonnegative  

2 !(!)
!

!!!
! !!(!)

!

!!!
!

 
 

||x||1 ≤ p 

lattice polygons with large diameter  



 
 

Graphical zonotope : Minkowski sum of segments [ei,ej] for all edges 
{i,j} of a given graph. Ex. permutahedron : graphical zonotope of the 
complete graph on d nodes 
 
For k ≤ d, graphical zonotope Z*(d,k) of circulant graph of degree k-1 
on d nodes, with a loop at each node (Minkowski sum of a cube) has : 
 

 dimension d 
 grid size embedding k 
 diameter (k+1)d/2 

 
Ex. H1(d,2)+ : lattice (d,d)-polytope with diameter d(d+1)/2 
 

graphical zonotopes 



 
 

For k ≤ d, graphical zonotope Z*(d,k) of the circulant graph of degree 
k-1 on d nodes, with a loop at each node 
 
δ(Z*(d,k)) = (k+1)d/2        with k ≤ d 
δ(H1(d,2)) lattice (d,2d-1)-polytope with diameter d2    with k = 2d -1 

δ(2,k) = δ(H1(2,p)) for infinitely many k  
δ(2,k) = δ(H (G))  for G subset of the generators of H1(2,p) for some p  

δ(d,1) = H1(d,1)  

δ(d,2) = δ(H (G))  for G subset of the generators of H1(d,2) 
δ(3,3) = δ(H1(3,2)+)  

 
Hq(d,p) : Minkowski sum of {x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0} 

lattice polytopes with large diameter  



m(d,1): maximum number of vertices of conv(WS) over matroid S of order n, 
and {0,1}-valued d x n matrix W 
 
Deza-Manoussakis-Onn 2016 :    | H∞(d,p)+ | ≤ m(d,p) ≤ | H∞(d,p) |   
 

⇒  | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 
 

 
32 ≤ m(3,1) ≤ 96 

 
370 ≤ m(4,1) ≤ 5 376 

 
    11 292 ≤ m(5,1) ≤ 1 981 440 

 
 
 

  H∞(3,1)+        H∞(3,1) : truncated small 
           rhombicuboctahedron  
| P | : number of vertices of P 

convex matroid optimization 



m(d,1): maximum number of vertices of conv(WS) over matroid S of order n, 
and {0,1}-valued d x n matrix W 
 
Deza-Manoussakis-Onn 2016 :    | H∞(d,p)+ | ≤ m(d,p) ≤ | H∞(d,p) |   
 

⇒  | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 
 

 
32 ≤ m(3,1) ≤ 96 

 
370 ≤ m(4,1) ≤ 5 376 

 
    11 292 ≤ m(5,1) ≤ 1 981 440 

 
 
 

      truncated cuboctahedron     H∞(3,1) : truncated small 
  (great rhombicuboctahedron)        rhombicuboctahedron  

convex matroid optimization 



 
 
m(d,1): maximum number of vertices of conv(WS) over matroid S of order 
n, and {0,1}-valued d x n matrix W 
 
 
d2d ≤ m(d,1) ≤                
 
 
24 ≤ m(3) ≤ 158  
64 ≤ m(4) ≤ 19 840   
 
Melamed-Onn 2014     

2 (3! − 3)/2
!

!!!

!!!
!

convex matroid optimization 



2 (3! − 3)/2
!
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m(d,1): maximum number of vertices of conv(WS) over matroid S of order n, 
and {0,1}-valued d x n matrix W 
 
 
d2d ≤ m(d,1) ≤                 2d! ≤ m(d,1) ≤            
 
 
24 ≤ m(3) ≤ 158   48 ≤ m(3) ≤ 96  
64 ≤ m(4) ≤ 19 840   672 ≤ m(4) ≤ 5 376  
 
Melamed-Onn 2014   Deza-Manoussakis-Onn 2016 

  

2 (3! − 3)/2
!

!!!

!!!
− 2 (3!!! − 3)/2

!− 1 !

convex matroid optimization 



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Conjecture (Deza-Manoussakis-Onn 2016) 
 
Ø  δ(d,k) is achieved, up to translation, by a Minkowski sum of lattice vector   

Ø  δ(d,k) ≤  (k+1)d/2  
 
⇒ δ(d,d) = d(d+1)/2  
⇒ δ(d,2d-1) = d2 
 
Conjecture holds for all (d,k) such that δ(d,k) is known  

lattice polytopes with large diameter  



Soprunov-Soprunova 2016. Minkowski length L(P) of a lattice polytope P : 
largest number of laltice segments which Minkowski sum is contained in P 
 
denote L({0,1,…,k}d) by L(d,k) 
 
L(d,1) = δ(H1(d,1)) = δ(d,1) 
L(d,2) = δ(H(G)) = δ(d,2)         G subset of generators of H1(d,2) 
L(2,k) = δ(H (G)) = δ(2,k)         G subset of generators of H1(2,p) for some p 
L(3,3) = δ(H1(3,2)+) =δ(3,3)  
L(d,d) = δ(H1(d,2)+)  
L(d,2d-1) = δ(H1(d,2))  
 
Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 

related questions  



Deza-Manoussakis-Onn 2016: for fixed positive integers p and q, linear 
optimization over Zq(d,p) is polynomial-time solvable, even in variable 
dimension d. 
 
 
⇒ for fixed positive integers p and q, the following problems are  
    polynomial time solvable. 
 
Ø  extremality: given x ∈ Zd, decide if x is a vertex of Zq(d,p)  

Ø  adjacency: given x1,x2 ∈  Zd, decide if [x1,x2]  is an edge of Zq(d,p)  

Ø  separation: given rational y ∈ Rd, either assert y ∈ Zq(d,p), or find h ∈ 
Zd separating y from Zq(d,p), that is, satisfying hTy > hTx for all x ∈ Zq(d,p) 

complexity questions  


