
Nonlinear Minimization Techniques
Without Using Derivatives

Florian Jarre (Univ. Düsseldorf)
Markus Lazar (Univ. Appl. Sc. Rosenheim),

Felix Lieder (Univ. Düsseldorf)

Aug. 10, ICCOPT 2016, Tokyo

with support from:

.



Key Points

I Some Interesting Application

I Challenges and open problems in the solution approach

I Numerically expensive derivative approximations lead to
methods that would otherwise (for standard NLP’s) not be
competitive

I Some results and further applications

I Generalization to Constrained Minimization

I Further (preliminary) Numerical Results



A Practical Calibration Problem

(The main motivation for this talk)

Three situations where an inclination sensor is used:



Reachstacker



Escape Stair



Turbine



Sensor used:



Accuracy:

Genauigkeit ± 0,01◦

Temperaturkoeffizient [1/K] ≤ ± 0,0008◦

Reproduzierbarkeit ≤ ± 0,01◦

Auflösung [◦] 0,001; parametrierbar

(http://www.ifm.com/products/de/ds/JN2101.htm)



The Mathematics behind this:

Based on some MEMS with inaccuracies in three locations.
Further measurement errors of accelerations lead to a nonlinear
least squares problem for calibrating each single sensor.

Abstract: “Lazyness”: (not the engineer who was lazy)

Approximation model
– technical formulae relating unknown angles ...

Nonlinear least squares problem with 12 unknowns and no
derivative information (unconstrained)



Derivative-Free Minimization Approaches
(Rios, Sahinidis, 2013)

I Most elegant (here!): Automatic differentiation
• Technical, further “investment” with unknown outcome

I Just in Matlab: Optimization toolbox (more later)

I Other public domain Matlab implementations: GLOBAL
(Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen),
snobfit (Huyer, Neumaier), minFunc (Schmidt), and
PSwarmM (Vaz, Vicente) ...

I Natural focus: Global optimization (lack of “local” derivative
information hurts least when a global minimizer is to be
approximated). Expensive / noisy function evaluations.



Derivative-Free Minimization Approaches
(Rios, Sahinidis, 2013)

I Most elegant (here!): Automatic differentiation
• Technical, further “investment” with unknown outcome

I Just in Matlab: Optimization toolbox (more later)

I Other public domain Matlab implementations: GLOBAL
(Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen),
snobfit (Huyer, Neumaier), minFunc (Schmidt), and
PSwarmM (Vaz, Vicente) ...

I Natural focus: Global optimization (lack of “local” derivative
information hurts least when a global minimizer is to be
approximated). Expensive / noisy function evaluations.



Derivative-Free Minimization Approaches
(Rios, Sahinidis, 2013)

I Most elegant (here!): Automatic differentiation
• Technical, further “investment” with unknown outcome

I Just in Matlab: Optimization toolbox (more later)

I Other public domain Matlab implementations: GLOBAL
(Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen),
snobfit (Huyer, Neumaier), minFunc (Schmidt), and
PSwarmM (Vaz, Vicente) ...

I Natural focus: Global optimization (lack of “local” derivative
information hurts least when a global minimizer is to be
approximated). Expensive / noisy function evaluations.



Derivative-Free Minimization Approaches
(Rios, Sahinidis, 2013)

I Most elegant (here!): Automatic differentiation
• Technical, further “investment” with unknown outcome

I Just in Matlab: Optimization toolbox (more later)

I Other public domain Matlab implementations: GLOBAL
(Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen),
snobfit (Huyer, Neumaier), minFunc (Schmidt), and
PSwarmM (Vaz, Vicente) ...

I Natural focus: Global optimization (lack of “local” derivative
information hurts least when a global minimizer is to be
approximated). Expensive / noisy function evaluations.



Calibration Problems
(and a number of other situations)

I Local solution, reasonable initial guess

I High accuracy

I Smoothness

I Moderately expensive function evaluations

I Robustness / ease of use / no installation



Jos Sturm, SeDuMi

I First:
Method with best theoretical complexity estimate
Not-so-long steps
(maintaining theoretical complexity estimate)

I Second:
User-friendly, convenient input-output format

I Third:
Decide on numerical linear algebra
(Cholesky factorization as preconditioner for cg iterations)



Best theoretical approach here?

Problem: minimize f (x) where lb ≤ x ≤ ub.

I This application: local minimization, smoothness

I Symmetric finite differences for first derivative
(minFunc, Matlab toolbox)
Gradients more expensive than in standard nonlinear
minimization

I Quasi-Newton updates for second derivative

I Trust region approach



Euclidean norm trust region

I Euclidean norm least squares symmetric update of Hessian
(PSB)

I Additional least squares update using central finite differences?

I Gradient: 2n function evaluations: =⇒
Line search for optimal trust region radius at each step



Underestimated detail: Line search
(minimizing some scalar function f : [a, b]→ R)

(open interval, when a = −∞ or b =∞.)



Underestimated detail: Line search
(minimizing some scalar function f : [a, b]→ R)

(open interval, when a = −∞ or b =∞.)

I fminbnd of Matlab does not guarantee value at least as low as
end points
(Example, log barrier, set to Inf whenever undefined)

I New code using golden mean search and spline interpolation

Rather long and technical but simple idea:
Minimize interpolating spline, decide whether to use minimizer
as next point to evaluate f .
(Also gives approximation for first and second derivative.)



Underestimated detail: Line search
(minimizing some scalar function f : [a, b]→ R)

(open interval, when a = −∞ or b =∞.)

I fminbnd of Matlab does not guarantee value at least as low as
end points
(Example, log barrier, set to Inf whenever undefined)

I New code using golden mean search and spline interpolation

Rather long and technical but simple idea:
Minimize interpolating spline, decide whether to use minimizer
as next point to evaluate f .
(Also gives approximation for first and second derivative.)



Cubic spline interpolation

I Choice: Natural spline, Not-a-knot-spline, ... ?
I Natural spline minimizes some measure of curvature of f

I Suitable for CAD
I No reason to assume f ′′ = 0 at end points,
I Approximation quality?

I Not-a-knot-spline

I Interpolation error generally higher near end points =⇒
I Higher degree of interpolation near end points
I But minimizer by construction in the middle (5 points).

I Least squares spline:



General cubic spline through (x0, f0), . . . , (xn, fn)

I First, fix s ′(x0) = s ′′(x0) = 0.

I Using f (x0), f (x1) determine s
∣∣∣
[x0,x1]

(2× 2 linear system).

I This gives you s(x1), s ′(x1), and s ′′(x1).

I Repeat determining s
∣∣∣
[xi ,xi+1]

for 1 ≤ i ≤ n − 1.

I Same way interpolate the zero function with initial values
ŝ ′(x0) = 1, ŝ ′′(x0) = 0 and with s̄ ′(x0) = 0, s̄ ′′(x0) = 1.

I For any α, β ∈ R the function s + αŝ + βs̄ interpolates f .



Least squares cubic spline

I Could fix α, β
such that s ′′(x0) = s ′′(xn) = 0 (natural spline), or
such that s ′′′(x1−) = s ′′′(x1+) and s ′′′(xn−1−) = s ′′′(xn−1+)

(not-a-knot spline)

I Again, system of 2 linear equations for 2 unknowns.

I Minimize
n−1∑
i=1

wi (s
′′′(xi−)− s ′′′(xi+))2

for some weights wi ≥ 0.
Here, wi := 1/(xi+1 − xi−1)
(to favor smaller jumps between short intervals).



Conditioning

Note: Above conditions define a scalar product on the space of
zero-interpolating functions.

I In spite of
ŝ ′(x0) = 1, ŝ ′′(x0) = 0 and s̄ ′(x0) = 0, s̄ ′′(x0) = 1,
ŝ and s̄ are nearly linearly dependent when xi accumulate in
the middle.

I Orthogonalize ŝ and s̄ w.r.t. above scalar product.

I Get new initial values for ŝ and s̄ (at x0).

I Recompute ŝ and s̄ for the new initial values.

I Stable solution of 2× 2 system.



Comparison with quadratic interpoation

I Better bounds; numerical examples give significantly better
approximation quality than quadratic interpolation

I Challenge: When a (very good – or not so good?) candidate
for a minimizer is given, how to choose the next point to
evaluate f .

I If fminbnd works it is hard to beat quadratic interpolation of
fminbnd.

I Jumps in s ′′′ may give some error bound that can be used for
the selection of the next iterate?

I Least squares approach for (low!) noise in the function
evaluation?



Gradient and Hessian Approximation

I Gradient: central finite difference
(ad hoc determination of step size)

I Hessian H: PSB

I followed by central finite difference for diagonal of H
(this is also a Euclidean least squares update) ???

I using other orthogonal bases?



Comparison of Hessian Approximations

Update fSTmod fCR
zero Hessian 3.4e-4 / 461 4.8e-3 /10000

curv. only, U=I 4.4e-5 / 123 3.8e-3 / 10000
curv. only, U=randworst 1.1e-11 / 73 1.7e-14/ 1853

PSB only 4.5e-13 / 23 6.4e-16 / 738
PSB & curv., U=I 1.9e-8 / 34 6.2e-15 / 739

PSB & curv., U=randworst 2.3e-11 / 39 1.8e-16 / 824
(n = 10, random test: 100 test runs)



Trust Region Step (ignoring the “hard case”)

I ∆x(λ) := −(H + λI )−1g where
g ≈ ∇f (x) and λ ≥ λ− := max{0,−λmin(H)}.

I Moré-Sorensen-type reparameterization:

λ(t) := λ− + ε+
1− λ
ε+ λ

for t ∈ [0, 1],

with ∆x(λ(0)) ≈ 0,

and ∆x(λ(1)) ≈
{

Newton step
large step along negative curvature



Line search:

(Dennis, Echebest, Guardarucci, Martinez, Scolnik, and Vacchino,
1991)

minimize f (x(λ(t))) for t ∈ [0, 1].

For some examples a rather high accuracy in t is needed.

Given an eigenvalue decomposition of H, the computation of
x(λ(t)) is cheap (Nevertheless, line search matters).



Usage

I Download min f .m (one file)

I simplest call: min f (@f ) for n = 1

I simplest call: min f (@f , zeros(n, 1)) for n > 1
Dimension of the starting point (e.g. zeros(n,1)), used to
initialize the algorithm.

I or: [x,y,g,H]=min f (@f , zeros(n, 1), options) with bounds...



Calibration



Calibration

I 120 measurement values for fixing 12 parameters.

I Nonlinear least squares problem.

I Lousy result.

I ???

I Subcontractor guaranteed certain high accurcy of “his” parts.

I Treat accuracy of “his” parts as a variable
(not a given parameter).

I No new programming necessary just add 3 further variables.



Results

(Subcontractor admitted wrong specifications)



Results



Other applications (Thanks to Roland Freund)

I Worst case performance of an algorithm?

I Example (with known answer): k steps of cg algorithm.

I

f : x 7→ xTAx − 2bT x + bTA−1b ≡ ‖x − A−1b‖2A
I Find eigenvalue distribution of A � 0 and initial point x0 such

that the k-th cg-iterate xk maximizes
(
f (xk )
f (x0)

)1/2
subject to

the constraint cond(A) ≤ κ.

(Worst case performance of cg method)

I Known:

max

(
f (xk)

f (x0)

)1/2

= 2

[(√
κ+ 1√
κ− 1

)k

+

(√
κ− 1√
κ+ 1

)k
]−1

.



Worst case performance

W.l.o.g. A is diagonal. Initially, eigenvalues evenly distributed in
[1, κ], x0 all ones. Here, n = 10 and κ = 10:

k red0 redmax dist # it. # f-eval. time

1 0.6158 0.8182 1.7e-13 11 700 0.70
3 0.2257 0.2750 0 22 1242 0.54
5 0.0607 0.0756 1.2e-14 25 1426 0.70
7 0.0098 0.0204 4.0e-15 28 1619 0.87
9 0.0006 0.0055 8.0e-15 45 2688 1.60

(Solution not unique, some bi are zero, multiple eigenvalues)
For each k, a different matrix A and a different starting vector x0

lead to the worst case.



Worst case performance

Here, k = 20 and κ = 100.

n red0 redmax dist # it. # f-eval. time

25 0.0002 0.0361 6.0e-15 68 8205 7.34
50 0.0095 0.0361 1.4e-14 79 17486 14.48

100 0.0235 0.0361 3.6e-12 194 8.2213 67.92
200 0.0250 0.0361 4.5e-12 222 182701 150.23

(n = 200 means 397 variables with bounds).



Principal Components and Factor Analysis

Given a symmetric positive semidefinite n × n matrix X find a
nonnegative diagonal matrix D and a n × k matrix F such that
‖X − FFT − D‖F is small.
(More constraints to be taken into account.)

(SDP)
Maximize I • D s.t. D diagonal, D ≥ 0, and X − D � 0.
Factor X − D = F̂ F̂T , possibly omitt some columns of F̂ .

• 20× 20 example from the literature.
After fixing k minimizing ‖X − FFT − D‖2F yields another 20 %
improvement. (Just to find out whether it is worth continuing
optimization on a given factorization)



CUTE-ST Test Problems (Gould, Orban, Toint)

I Replace NaN with Inf

I Increase step length accuracy from 10−6 to 10−10

(for smooth functions about 0.5 extra fn eval. in line search)

I 170 unconstrained problems of dimension ≤ 300

I 29 times iteration limit reached (100*n)
(all but 2 problems had 4 digits accuracy by then)

I 16 times stop after 2 iterations

I 49 times norm of gradient ≤ 10−8 (twice fn value -Inf)

I 107 times norm of gradient ≤ 10−4

I 120 times norm of gradient ≤ 10−2

(some others seem to be close to a local opt. as well)



Constrained Minimization (with open questions)

Input format:

minimize f (x) | fE1(x) = 0, AE2x = bE2 ,
fI1(x) ≤ 0, AI2x ≤ bI2 , lb ≤ x ≤ ub,

where all functions are assumed to be differentiable.

I matlab fmincon

I Sampaio and Toint (OMS, 2016): Derivative-free trust-funnel
method



Constrained Minimization (with open questions)

Input format:

minimize f (x) | fE1(x) = 0, AE2x = bE2 ,
fI1(x) ≤ 0, AI2x ≤ bI2 , lb ≤ x ≤ ub,

where all functions are assumed to be differentiable.

Eliminate the equations AE2x = bE2 (QR factorization):

minimize f (x) | fE (x) = 0, fI (x) ≤ 0, Ax ≤ b.

(Lower dimension, loss of sparsity)

Preprocessing: b ≥ 0.



“Best” approach?

I Central finite differences

I SQP subproblems with Euclidean norm trust region constraint

I Second order correction

I Project Hessian H of Lagrangian to orthogonal complement of
active constraint gradients → H̃.

I Regularize with a multiple of the identity

I Evaluate linearized feasibility within trust region radius: “rv”



SQP Subproblem

I Î : violated inequalites at current iterate, (all nonlinear)
Â: remaining inequalities.

I

minimize gT∆x + 1
2∆xT H̃∆x

s.t.

DfE∆x − sE = −fE ,
DfÎ∆x − sÎ ≤ −fÎ ,

− sÎ ≤ 0,

Â∆x ≤ b̂,
‖∆x‖2 ≤ δ2,

‖sE‖2 + ‖sÎ‖
2 ≤ 0.9r2v + 0.1(‖fE‖2 + ‖fÎ‖

2).

I Three SOC constraints



Use Second Order Cone Programming?

I Two 2-norm cones (seem to be o.k.)

I Cholesky factor of H̃ � 0 defining the third cone is typically
poorly conditioned

I Solution very poorly scaled.
Inactive parts vary by 105 for a well conditioned problem of 3
variables and a feasible iterate with 10−4 accuracy.
(SOCP to 10 digits accuracy)

I Search direction is an ascent direction.

I Trying to scale the problem — even after knowing the
solution – did not help.

I Conditioning also was the reason for using a 2-stage approach,
first determining rv and then solving the SQP problem, rather
than using a “big-M” approach.

I SOCP formulation inherently / unnecessarily ill-conditioned?



To Do

I Other IPM approaches without using SOCP refomulation?

I Active Set methods?



CUTE-ST Test Problems (Gould, Orban, Toint)

I 651 constrained problems with m + n ≤ 500, where m is the
number of inequality constraints

I 221 times ≥ 6 digits accuracy reached (local sol.)

I 131 times infeasible stationary point reached (6 digits)

I 94 times 3-6 digits accuracy reached

I 54 times iteration limit reached

I 123 times stop due to slow progress

I 4 times return inital point.



Conclusion

I Many interesting applications

I Expensive finite differences lead to a wider selection of
solution approaches
allowing more expensive linear algebra without dominating the
overall computational effort.

I (and a new line search)

I Cautious new insight on SOCP solver

I Unconstrained version available from home page
• Florian Jarre (page in English) −→
• (Smooth) minimization without using derivatives

I (Constrained version upon request)


