Nonlinear Minimization Techniques Without Using Derivatives

Florian Jarre (Univ. Düsseldorf) Markus Lazar (Univ. Appl. Sc. Rosenheim), Felix Lieder (Univ. Düsseldorf)

Aug. 10, ICCOPT 2016, Tokyo with support from:

.

ifm - close to you!

Key Points

- Some Interesting Application
- Challenges and open problems in the solution approach
- Numerically expensive derivative approximations lead to methods that would otherwise (for standard NLP's) not be competitive

- Some results and further applications
- Generalization to Constrained Minimization
- Further (preliminary) Numerical Results

A Practical Calibration Problem

(The main motivation for this talk)

Three situations where an inclination sensor is used:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reachstacker

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ ����

Escape Stair

Sensor used:

Accuracy:

Genauigkeit	\pm 0,01 $^{\circ}$
Temperaturkoeffizient [1/K]	$\leq \pm$ 0,0008 $^{\circ}$
Reproduzierbarkeit	$\leq \pm$ 0,01 $^{\circ}$
Auflösung [°]	0,001; parametrierbar

(http://www.ifm.com/products/de/ds/JN2101.htm)

The Mathematics behind this:

Based on some MEMS with inaccuracies in three locations. Further measurement errors of accelerations lead to a nonlinear least squares problem for calibrating each single sensor.

Abstract: "Lazyness": (not the engineer who was lazy)

Approximation model

- technical formulae relating unknown angles ...

Nonlinear least squares problem with 12 unknowns and no derivative information (unconstrained)

- Most elegant (here!): Automatic differentiation
 - Technical, further "investment" with unknown outcome
- Just in Matlab: Optimization toolbox (more later)
- Other public domain Matlab implementations: GLOBAL (Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen), snobfit (Huyer, Neumaier), minFunc (Schmidt), and PSwarmM (Vaz, Vicente) ...

- Most elegant (here!): Automatic differentiation
 - Technical, further "investment" with unknown outcome
- Just in Matlab: Optimization toolbox (more later)
- Other public domain Matlab implementations: GLOBAL (Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen), snobfit (Huyer, Neumaier), minFunc (Schmidt), and PSwarmM (Vaz, Vicente) ...

- Most elegant (here!): Automatic differentiation
 - Technical, further "investment" with unknown outcome
- Just in Matlab: Optimization toolbox (more later)
- Other public domain Matlab implementations: GLOBAL (Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen), snobfit (Huyer, Neumaier), minFunc (Schmidt), and PSwarmM (Vaz, Vicente) ...

- Most elegant (here!): Automatic differentiation
 - Technical, further "investment" with unknown outcome
- Just in Matlab: Optimization toolbox (more later)
- Other public domain Matlab implementations: GLOBAL (Csendes), SID-PSM (Custodio, Vicente), cmaes (Hansen), snobfit (Huyer, Neumaier), minFunc (Schmidt), and PSwarmM (Vaz, Vicente) ...
- Natural focus: Global optimization (lack of "local" derivative information hurts least when a global minimizer is to be approximated). Expensive / noisy function evaluations.

Calibration Problems (and a number of other situations)

- Local solution, reasonable initial guess
- High accuracy
- Smoothness
- Moderately expensive function evaluations
- Robustness / ease of use / no installation

Jos Sturm, SeDuMi

First:

Method with best theoretical complexity estimate Not-so-long steps (maintaining theoretical complexity estimate)

Second:

User-friendly, convenient input-output format

Third:

Decide on numerical linear algebra

(Cholesky factorization as preconditioner for cg iterations)

Best theoretical approach here?

Problem: minimize f(x) where $lb \le x \le ub$.

- This application: local minimization, smoothness
- Symmetric finite differences for first derivative (minFunc, Matlab toolbox)
 Gradients more expensive than in standard nonlinear minimization

- Quasi-Newton updates for second derivative
- Trust region approach

Euclidean norm trust region

- Euclidean norm least squares symmetric update of Hessian (PSB)
- Additional least squares update using central finite differences?

► Gradient: 2n function evaluations: ⇒ Line search for optimal trust region radius at each step Underestimated detail: Line search (minimizing some scalar function $f : [a, b] \rightarrow \mathbb{R}$) (open interval, when $a = -\infty$ or $b = \infty$.)

Underestimated detail: Line search (minimizing some scalar function $f : [a, b] \rightarrow \mathbb{R}$)

(open interval, when $a = -\infty$ or $b = \infty$.)

 fminbnd of Matlab does not guarantee value at least as low as end points (Example, log barrier, set to *Inf* whenever undefined)

Underestimated detail: Line search (minimizing some scalar function $f : [a, b] \rightarrow \mathbb{R}$)

(open interval, when $a = -\infty$ or $b = \infty$.)

- fminbnd of Matlab does not guarantee value at least as low as end points (Example, log barrier, set to *Inf* whenever undefined)
- New code using golden mean search and spline interpolation

Rather long and technical but simple idea: Minimize interpolating spline, decide whether to use minimizer as next point to evaluate f.

(Also gives approximation for first and second derivative.)

Cubic spline interpolation

- Choice: Natural spline, Not-a-knot-spline, ... ?
- Natural spline minimizes some measure of curvature of f
 - Suitable for CAD
 - No reason to assume f'' = 0 at end points,
 - Approximation quality?
- Not-a-knot-spline
 - Interpolation error generally higher near end points \Longrightarrow
 - Higher degree of interpolation near end points
 - But minimizer by construction in the middle (5 points).

Least squares spline:

General cubic spline through $(x_0, f_0), \ldots, (x_n, f_n)$

• First, fix
$$s'(x_0) = s''(x_0) = 0$$
.

• Using $f(x_0), f(x_1)$ determine $s\Big|_{[x_0,x_1]}$ (2 × 2 linear system).

- This gives you $s(x_1)$, $s'(x_1)$, and $s''(x_1)$.
- Repeat determining $s\Big|_{[x_i,x_{i+1}]}$ for $1 \le i \le n-1$.
- Same way interpolate the zero function with initial values $\hat{s}'(x_0) = 1$, $\hat{s}''(x_0) = 0$ and with $\bar{s}'(x_0) = 0$, $\bar{s}''(x_0) = 1$.
- For any $\alpha, \beta \in \mathbb{R}$ the function $s + \alpha \hat{s} + \beta \bar{s}$ interpolates f.

(日) (同) (三) (三) (三) (○) (○)

Least squares cubic spline

• Could fix
$$\alpha, \beta$$

such that $s''(x_0) = s''(x_n) = 0$ (natural spline), or
such that $s'''(x_{1-}) = s'''(x_{1+})$ and $s'''(x_{n-1-}) = s'''(x_{n-1+})$
(not-a-knot spline)

- Again, system of 2 linear equations for 2 unknowns.
- Minimize

$$\sum_{i=1}^{n-1} w_i (s'''(x_{i-}) - s'''(x_{i+}))^2$$

for some weights $w_i \ge 0$. Here, $w_i := 1/(x_{i+1} - x_{i-1})$ (to favor smaller jumps between short intervals).

Conditioning

Note: Above conditions define a scalar product on the space of zero-interpolating functions.

In spite of

$$\hat{s}'(x_0)=1,\ \hat{s}''(x_0)=0$$
 and $ar{s}'(x_0)=0,\ ar{s}''(x_0)=1,$

 \hat{s} and \bar{s} are nearly linearly dependent when x_i accumulate in the middle.

- Orthogonalize \hat{s} and \bar{s} w.r.t. above scalar product.
- Get new initial values for \hat{s} and \bar{s} (at x_0).
- Recompute \hat{s} and \bar{s} for the new initial values.
- Stable solution of 2×2 system.

Comparison with quadratic interpoation

- Better bounds; numerical examples give significantly better approximation quality than quadratic interpolation
- Challenge: When a (very good or not so good?) candidate for a minimizer is given, how to choose the next point to evaluate f.
- If fminbnd works it is hard to beat quadratic interpolation of fminbnd.
- Jumps in s^{'''} may give some error bound that can be used for the selection of the next iterate?

Least squares approach for (low!) noise in the function evaluation?

Gradient and Hessian Approximation

- Gradient: central finite difference (ad hoc determination of step size)
- Hessian H: PSB
- followed by central finite difference for diagonal of H (this is also a Euclidean least squares update) ???

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

using other orthogonal bases?

Comparison of Hessian Approximations

Update	f _{STmod}	f _{CR}	
zero Hessian	3.4e-4 / 461	4.8e-3 /10000	
curv. only, U=I	4.4e-5 / 123	3.8e-3 / 10000	
curv. only, U=rand _{worst}	1.1e-11 / 73	1.7e-14/ 1853	
PSB only	4.5e-13 / 23	6.4e-16 / 738	
PSB & curv., U=I	1.9e-8 / 34	6.2e-15 / 739	
PSB & curv., U=rand _{worst}	2.3e-11 / 39	1.8e-16 / 824	

(n = 10, random test: 100 test runs)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trust Region Step (ignoring the "hard case")

•
$$\Delta x(\lambda) := -(H + \lambda I)^{-1}g$$
 where
 $g \approx \nabla f(x)$ and $\lambda \ge \lambda_{-} := \max\{0, -\lambda_{\min}(H)\}.$

Moré-Sorensen-type reparameterization:

$$\lambda(t) := \lambda_{-} + \epsilon + rac{1-\lambda}{\epsilon+\lambda} \ \ ext{for} \ \ t \in [0,1],$$

with $\Delta x(\lambda(0)) \approx 0$, and $\Delta x(\lambda(1)) \approx \begin{cases} Newton step \\ large step along negative curvature \end{cases}$

Line search:

(Dennis, Echebest, Guardarucci, Martinez, Scolnik, and Vacchino, 1991)

minimize
$$f(x(\lambda(t)))$$
 for $t \in [0, 1]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For some examples a rather high accuracy in t is needed.

Given an eigenvalue decomposition of H, the computation of $x(\lambda(t))$ is cheap (Nevertheless, line search matters).

Usage

- Download min_f.m (one file)
- simplest call: min_f(@f) for n = 1
- ▶ simplest call: min_f(@f, zeros(n, 1)) for n > 1 Dimension of the starting point (e.g. zeros(n,1)), used to initialize the algorithm.
- ▶ or: [x,y,g,H]=min_f(@f, zeros(n, 1), options) with bounds...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Calibration

Calibration

- ▶ 120 measurement values for fixing 12 parameters.
- Nonlinear least squares problem.
- Lousy result.
- ► ???
- Subcontractor guaranteed certain high accurcy of "his" parts.
- Treat accuracy of "his" parts as a variable (not a given parameter).
- No new programming necessary just add 3 further variables.

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3,0° 2,5° 2,0° 1,5° 0,0° Calibrating Position

Distortion of Sensor Axes

(Subcontractor admitted wrong specifications)

31,5° 31,0° 30,5° 29,5° 29,0° 28,5° 0° 90° 180° 270° 360° 180° 270° 360°

Accuracy Testresults

third Euler angle ψ

Results

Other applications (Thanks to Roland Freund)

- Worst case performance of an algorithm?
- Example (with known answer): k steps of cg algorithm.

$$f: x \mapsto x^T A x - 2b^T x + b^T A^{-1} b \equiv \|x - A^{-1}b\|_A^2$$

Find eigenvalue distribution of A ≻ 0 and initial point x⁰ such that the k-th cg-iterate x^k maximizes (^{f(x^k)}/_{f(x⁰)})^{1/2} subject to the constraint cond(A) ≤ κ.

(Worst case performance of cg method)

Known:

$$\max\left(\frac{f(x^k)}{f(x^0)}\right)^{1/2} = 2\left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^k + \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k\right]^{-1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Worst case performance

W.l.o.g. A is diagonal. Initially, eigenvalues evenly distributed in $[1, \kappa]$, x^0 all ones. Here, n = 10 and $\kappa = 10$:

k	red ₀	red _{max}	dist	# it.	# f-eval.	time
1	0.6158	0.8182	1.7e-13	11	700	0.70
3	0.2257	0.2750	0	22	1242	0.54
5	0.0607	0.0756	1.2e-14	25	1426	0.70
7	0.0098	0.0204	4.0e-15	28	1619	0.87
9	0.0006	0.0055	8.0e-15	45	2688	1.60

(Solution not unique, some b_i are zero, multiple eigenvalues) For each k, a different matrix A and a different starting vector x^0 lead to the worst case.

Worst case performance

Here, k = 20 and $\kappa = 100$.

n	red ₀	red _{max}	dist	# it.	# f-eval.	time
25	0.0002	0.0361	6.0e-15	68	8205	7.34
50	0.0095	0.0361	1.4e-14	79	17486	14.48
100	0.0235	0.0361	3.6e-12	194	8.2213	67.92
200	0.0250	0.0361	4.5e-12	222	182701	150.23

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(n = 200 means 397 variables with bounds).

Principal Components and Factor Analysis

Given a symmetric positive semidefinite $n \times n$ matrix X find a nonnegative diagonal matrix D and a $n \times k$ matrix F such that $||X - FF^T - D||_F$ is small. (More constraints to be taken into account.)

(SDP) Maximize $I \bullet D$ s.t. D diagonal, $D \ge 0$, and $X - D \succeq 0$. Factor $X - D = \hat{F}\hat{F}^{T}$, possibly omitt some columns of \hat{F} .

• 20 × 20 example from the literature. After fixing k minimizing $||X - FF^T - D||_F^2$ yields another 20 % improvement. (Just to find out whether it is worth continuing optimization on a given factorization)

CUTE-ST Test Problems (Gould, Orban, Toint)

- Replace NaN with Inf
- Increase step length accuracy from 10⁻⁶ to 10⁻¹⁰ (for smooth functions about 0.5 extra fn eval. in line search)
- 170 unconstrained problems of dimension \leq 300
- 29 times iteration limit reached (100*n)
 (all but 2 problems had 4 digits accuracy by then)
- 16 times stop after 2 iterations
- ▶ 49 times norm of gradient $\leq 10^{-8}$ (twice fn value -Inf)
- 107 times norm of gradient $\leq 10^{-4}$
- ▶ 120 times norm of gradient ≤ 10⁻² (some others seem to be close to a local opt. as well)

Constrained Minimization (with open questions)

Input format:

$$\begin{array}{lll} \text{minimize} & f(x) & | & f_{E_1}(x) = 0, & A_{E_2}x = b_{E_2}, \\ & & f_{l_1}(x) \leq 0, & A_{l_2}x \leq b_{l_2}, & lb \leq x \leq ub, \end{array}$$

where all functions are assumed to be differentiable.

- matlab fmincon
- Sampaio and Toint (OMS, 2016): Derivative-free trust-funnel method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constrained Minimization (with open questions)

Input format:

$$\begin{array}{lll} \text{minimize} & f(x) & | & f_{E_1}(x) = 0, & A_{E_2}x = b_{E_2}, \\ & & f_{l_1}(x) \leq 0, & A_{l_2}x \leq b_{l_2}, & lb \leq x \leq ub, \end{array}$$

where all functions are assumed to be differentiable.

Eliminate the equations $A_{E_2}x = b_{E_2}$ (QR factorization):

minimize $f(x) \mid f_E(x) = 0$, $f_I(x) \le 0$, $Ax \le b$.

(Lower dimension, loss of sparsity)

Preprocessing: $b \ge 0$.

"Best" approach?

- Central finite differences
- SQP subproblems with Euclidean norm trust region constraint
- Second order correction
- Project Hessian H of Lagrangian to orthogonal complement of active constraint gradients → H̃.
- Regularize with a multiple of the identity
- Evaluate linearized feasibility within trust region radius: " r_v "

SQP Subproblem

î: violated inequalites at current iterate, (all nonlinear)
 Â: remaining inequalities.

Three SOC constraints

Use Second Order Cone Programming?

- Two 2-norm cones (seem to be o.k.)
- ▶ Cholesky factor of $\tilde{H} \succ 0$ defining the third cone is typically poorly conditioned
- Solution very poorly scaled.
 Inactive parts vary by 10⁵ for a well conditioned problem of 3 variables and a feasible iterate with 10⁻⁴ accuracy.
 (SOCP to 10 digits accuracy)
- Search direction is an ascent direction.
- Trying to scale the problem even after knowing the solution – did not help.
- Conditioning also was the reason for using a 2-stage approach, first determining r_v and then solving the SQP problem, rather than using a "big-M" approach.
- SOCP formulation inherently / unnecessarily ill-conditioned?

Other IPM approaches without using SOCP refomulation?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Active Set methods?

CUTE-ST Test Problems (Gould, Orban, Toint)

▶ 651 constrained problems with m + n ≤ 500, where m is the number of inequality constraints

- 221 times \geq 6 digits accuracy reached (local sol.)
- ▶ 131 times infeasible stationary point reached (6 digits)
- 94 times 3-6 digits accuracy reached
- 54 times iteration limit reached
- 123 times stop due to slow progress
- 4 times return inital point.

Conclusion

- Many interesting applications
- Expensive finite differences lead to a wider selection of solution approaches allowing more expensive linear algebra without dominating the overall computational effort.
- (and a new line search)
- Cautious new insight on SOCP solver
- Unconstrained version available from home page
 - Florian Jarre (page in English) \longrightarrow
 - (Smooth) minimization without using derivatives

(Constrained version upon request)